

Thermal Management in batteries with innovative Thermal Interface Materials

A. Wiessler, Polytec PT GmbH – Dürr Gluing Symposium, Bietigheim, 10.10.2019

Outline

- Motivation
- Why Thermal Interface Materials (TIMs)?
- Selection of TIMs based on performance and process parameters
- Methods for testing and assessing TIMs
- Outlook ongoing R&D goals

Motivation

- Longtime experience with electrically and thermally conductive adhesives
- Increased demand for customized materials
- since 2012: serial supply of a thermally conductive adhesive for hybrid batteries
- Since 2015: New development of gapfillers for numerous battery projects
- 2019: SOP of several gapfiller & adhesive projects

About Polytec PT

- Development & manufacturing of specialty adhesives and Thermal Interface Materials
- Customer-specific formulations (>50% of sales)
- Flexibility in production 0,1 kg ... 1200 kg batches
- Active in funded and joint research project

Why thermal management in EV-Batteries?

- Electrical performance depends on operating temperature
- Li-lon cells degrade when exposed to too high temperatures
- Typical requirements for operating conditions:
 - Operating temperature ideally at 30-40° C
 - Cell temperature never above 80° C
 - Charging/Discharging only between 0 and 60° C

Lit.: Thomas Wetzel – Thermisches Design von Lithium-Ionen-Batteriezellen, KIT Institut für thermische Verfahrenstechnik, 2010

Picture: Wikipedia/Heatlord, CC BY-SA 3.0

Why Thermal Interface Materialis (TIMs)?

- Active components (battery cells, semiconductors etc.) generate heat losses
- Mechanical connection with cooling structures feature small air gaps
- Air is a very poor thermal conductor
- Consequently air gaps need to be filled with an interface material

Air $\lambda = 0.026$ W/mK

Aluminum $\lambda = 237 \text{ W/mK}$

Picture: Polytec PT

What is a TIM at all?

Organic Matrix

- Oil
- Polymer
- Adhesive

0,2 - 0,3 W/mK

Thermally conductive fillers

- Ceramics
- Metals
- Graphite

30 -> 300 W/mK for the bulk material

Modeling of thermal conductivity

Lewis-Nielsen model

$$\lambda_C = \lambda_M \cdot \frac{1 + (A - 1)B\phi}{1 - \psi B\phi}$$

- 1.) Volume fraction of the filler (Φ)
- 2.) Conductivity of the matrix (λ_M)
- 3.) Maximum packing density (Ψ)
- 4.) Particle shape factor (A)
- 5.) Filler conductivity (determines *B*)

it.: T. B. Lewis, L. E. Nielsen, Journal of Applied Polymer Science, Volume 14, Issue 6, pages 1449–1471, June 1970

Types of Thermal Interface Materials

	Conductive Pads	Conductive Pastes	Conductive Adhesives	Gapfillers	Speciality: PCM*
Chemically curing	No	No	Yes	Yes	No
Reworkable	Yes	Yes	No	Yes	Yes
Advantages	Pre-fabricated "Part"-character	Ease of use	Mechanical and thermal connection	Broad range of material properties	Latent-heat storage
Short- comings	Difficult to automate Compressive force necessary	Suitability depending on installation situation Only high viscosity grades	Limited conductivity Curing time needed	Curing time needed	Mostly available as pads

Examples for Thermal Interface Materials

Thermally conductive epoxies for bonding

prismatic Li-Ion cells to cooler

Thermally conductive paste/gapfiller for thermal connection of battery modules to cooling structure

Fundamental properties of TIMs

Material properties

- Composition (Silicone yes/no)
- Consistency
- Density

Process properties

- Shelf life
- Viscosity, flow properties
- Metering / dispensing poperties
- Abrasiveness

Operation properties

- Thermal conductivity
- Isolation properties
- Adhesion
- Elasticity

Long-term properties

- Temperature resistance
- Chemical resistance
- Vibration resistance

www.polytec-pt.com

Example 1: thermally conductive adhesives

Feature	Range of values	
Consistency	Self levelling pasty	
Curing conditions	24 h/23 °C 60 min/80 °C	
Therm. conductivity	0,8 2 W/mK*	
Density	1,5 2 g/cm²	
Modulus	100 9.000 MPa	
Lap sheer strength**	5 15 MPa	
Elongation at break	up to ~20 %	

^{*} Up to 3 W/mK upon request (with compromises regarding mechanical properties)

^{**} on untreated aluminum

Example 2: thermally conductive pastes

Feature	Range of values	
Konsistenz	pasty	
Viscosity at 40 °C	150 250 Pa s	
Gap dimensions	0,2 2 mm	
Curing	Non-curing	
Therm. conductivity	2,0 2,7 W/mK	
Density	~2 g/cm³	

Example 3: thermally conductive gapfillers

Feature	Range of values	
Consistency	Self-levelling pasty	
Viscosity at 23 °C	50 250 Pa s	
Gap dimensions	0,2 5 mm	
Curing	Curing at RT	
Therm. conductivity	1,5 3,2 W/mK	
Density	2,03,1 g/cm³	

- Accelerated ageing tests Test Methods
- Goal: Validation of vehicle life time (10-15 years)
 - Temperature- & humidity storage (THT)
 - Temperature-cycling / -schocks (TC)
 - Combined TC und THT storage, e.g.
 VW PV-1200
 - Vibration tests (with temperature cycling), e.g. VW 82161
 - Power cycling test (PC)

Accelerated ageing tests – Test Methods

Besides material properties and test conditions sample preparation is of essence

Bulk Material #

<u>£</u> La

Lab tests

≠ Samples in module dimensions

DummyModules

≠ Battery & vehicle testing (OEM)

Pictures: Polytec PT

Accelerated ageing tests – Test Methods

PV1200 Temperature cycling + humidity -40...+80 °C in weeks

- Accelerated ageing tests PV 1200
 - Aluminum/glass substrate
 150 x 390 mm
 - 2 mm gap
- Horizontal storage
- 2 cycles/day -40 ... +80 ° C appr. 30 ... 80 % r.F.
- Duration 12 weeks (2000 hours)
- Optical inspection

Example: 2-part Gapfiller

- Ok after 12 weks (2000 h)
- No crack formation oder delamination

Dismanteling

- Accelerated ageing tests Vibration
 - On the basis of VW 82161
- Dummy-module 150 x 390 mm
- Testing on shaker with temperature cycling
 at -20 ... + 65 ° C
 5 ... 200 Hz
- Duration 120 h(X, Y, Z 40 h each)
- Optical Inspection

Example:

1-part conductive paste

- Accelerated ageing tests Power cycling
 - Aluminum cylinder Ø 30 mm
 - Upper cylinder periodically heated to 90 or 110 ° C

21

Outlook – R&D goals

- High thermal conductivities
- Suitability for respective processes (Flowability/Compressability)
- Low manufacturing cost
- Customized mechanical properties
- Reworkability
- Customer specific requirements

Thank you very much

for your attention