Technische Information **Proline Promass A 300**

Coriolis-Durchflussmessgerät

Genaues Einrohr-Messgerät für kleinste Durchflüsse mit kompaktem, zugangsoptimiertem Messumformer

Anwendungsbereich

- Messprinzip arbeitet unabhängig von physikalischen Messstoffeigenschaften wie Viskosität und Dichte
- Geeignet für Anwendungen mit kleinsten Durchflussmengen in allen Industrien

Geräteeigenschaften

- Nennweite: DN 1...4 (1/24...1/8")
- Prozessdruck bis 430,9 bar (6250 psi)
- Messstofftemperatur bis +205 °C (+401 °F)
- Kompaktes Zweikammergehäuse mit bis zu 3 Ein-/Ausgängen
- Beleuchtete Anzeige mit Touch Control, WLAN-Zugriff
- Abgesetzte Anzeige erhältlich

Ihre Vorteile

- Platzsparende Installation kompakter, leichter Messaufnehmer
- Höchste Produktqualität selbstentleerbares Messrohrdesign in allen Nennweiten
- Optimale Prozesssicherheit beständig gegen korrosive Umgebungsbedingungen und Messrohrverstopfungen
- Voller Zugriff auf Prozess- und Diagnoseinformationen zahlreiche, frei kombinierbare I/Os und Feldbusse
- Reduzierte Komplexität und Varianz frei konfigurierbare I/O-Funktionalität
- Verifikation ohne Ausbau Heartbeat Technology

Inhaltsverzeichnis

Hinweise zum Dokument	4	Klimaklasse	50
Verwendete Symbole	4	Schutzart	
		Vibrationsfestigkeit	
Arbeitsweise und Systemaufbau	5	Schockfestigkeit	51
Messprinzip		Stoßfestigkeit	
Messeinrichtung		Innenreinigung	51 51
Gerätearchitektur		Elektromagnetische vertragnenkeit (Enviv)	21
Sicherheit	7	_	
Eingang	10	Messstofftemperaturbereich	
Messgröße		Messstoffdichte	52 52
Messbereich		Gehäuse Messaufnehmer	56
Messdynamik		Berstscheibe	
Eingangssignal	11	Durchflussgrenze	
		Druckverlust	57
Ausgang	13	Systemdruck	57
gg	13	Wärmeisolation	58
Ausgangssignal		Beheizung	58
Ausfallsignal	18	Vibrationen	58
Ex-Anschlusswerte	20		
3	21 21	Konstruktiver Aufbau	
3	21	Abmessungen in SI-Einheiten	
1 Totokonopezmiotne Buten 1		Abmessungen in US-Einheiten	
Co anai arrang angun a	26	Gewicht	
Energieversorgung		Werkstoffe	
Verfügbare Gerätestecker		Oberflächenrauhigkeit	
	28	Obernachemaanigkeit	رن
	29	Dodionhoulroit	റാ
	30	Bedienbarkeit	
Stromaufnahme	30	Bedienkonzept	
	30	Vor-Ort-Bedienung	
	31	Fernbedienung	
Potenzialausgleich		Serviceschnittstelle	
Klemmen		Netzwerk Integration	
	40	Unterstützte Bedientools	93
Nabelspezilikation	40	HistoROM Datenmanagement	94
Leistungsmerkmale	43		
	43	Zertifikate und Zulassungen	
	43	CE-Zeichen	
Wiederholbarkeit	44	C-Tick Zeichen	95 95
	45	Lebensmitteltauglichkeit	96
3 3 1	45	Pharmatauglichkeit	
	45	S S S S S S S S S S S S S S S S S S S	
	45	Zertifizierung HART	
Berechnungsgrundlagen	45	Zertifizierung FOUNDATION Fieldbus	
		Zertifizierung PROFIBUS	97
3	46	Zertifizierung EtherNet/IP	97
g	46	Zertifizierung PROFINET	
	47	Funkzulassung	97
Ein- und Auslaufstrecken	48 48	Weitere Zertifizierungen	97 98
Umgebung	50	Bestellinformationen	99
Umgebungstemperaturbereich			99
Lagerungstemperatur	50		

2

Anwendungspakete	9 9
Heartbeat Technology	100
Konzentration	100
Sonderdichte	100
OPC-UA-Server	100
Zubehör	100
Gerätespezifisches Zubehör	10
Kommunikationsspezifisches Zubehör	102
Servicespezifisches Zubehör	103
Systemkomponenten	103
Ergänzende Dokumentation	104
Standarddokumentation	
Geräteabhängige Zusatzdokumentation	104
Eingetragene Marken	10

Hinweise zum Dokument

Verwendete Symbole

Elektrische Symbole

Symbol	Bedeutung
	Gleichstrom
~	Wechselstrom
$\overline{\sim}$	Gleich- und Wechselstrom
≐	Erdanschluss Eine geerdete Klemme, die vom Gesichtspunkt des Benutzers über ein Erdungssystem geerdet ist.
	Schutzerde (PE: Protective earth) Erdungsklemmen, die geerdet werden müssen, bevor andere Anschlüsse hergestellt werden dürfen.
	Die Erdungsklemmen befinden sich innen und außen am Gerät: Innere Erdungsklemme: Schutzerde wird mit dem Versorgungsnetz verbunden. Äußere Erdungsklemme: Gerät wird mit dem Erdungssystem der Anlage verbunden.

$Kommunikations spezifische \, Symbole$

Symbol	Bedeutung
(Wireless Local Area Network (WLAN) Kommunikation über ein drahtloses, lokales Netzwerk.
	LED Leuchtdiode ist aus.
	LED Leuchtdiode ist an.
×	LED Leuchtdiode blinkt.

Symbole für Informationstypen

Symbol	Bedeutung
✓	Erlaubt Abläufe, Prozesse oder Handlungen, die erlaubt sind.
	Zu bevorzugen Abläufe, Prozesse oder Handlungen, die zu bevorzugen sind.
X	Verboten Abläufe, Prozesse oder Handlungen, die verboten sind.
i	Tipp Kennzeichnet zusätzliche Informationen.
Ţ <u>i</u>	Verweis auf Dokumentation
A=	Verweis auf Seite
	Verweis auf Abbildung
	Sichtkontrolle

Symbole in Grafiken

Symbol	Bedeutung
1, 2, 3,	Positionsnummern
1., 2., 3.,	Handlungsschritte
A, B, C,	Ansichten
A-A, B-B, C-C,	Schnitte
EX	Explosionsgefährdeter Bereich
×	Sicherer Bereich (nicht explosionsgefährdeter Bereich)
≋➡	Durchflussrichtung

Arbeitsweise und Systemaufbau

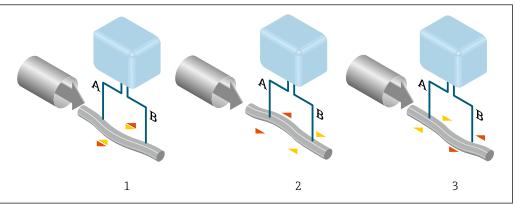
Messprinzip

Das Messprinzip basiert auf der kontrollierten Erzeugung von Corioliskräften. Diese Kräfte treten in einem System immer dann auf, wenn sich gleichzeitig translatorische (geradlinige) und rotatorische (drehende) Bewegungen überlagern.

 $F_c = 2 \cdot \Delta m (v \cdot \omega)$

 $F_c = Corioliskraft$

 $\Delta m = bewegte Masse$


 $\omega = Drehgeschwindigkeit$

v = Radialgeschwindigkeit im rotierenden bzw. schwingenden System

Die Größe der Corioliskraft hängt von der bewegten Masse Δm , deren Geschwindigkeit v im System und somit vom Massefluss ab. Anstelle einer konstanten Drehgeschwindigkeit ω tritt beim Messaufnehmer eine Oszillation auf.

Beim Messaufnehmer wird das Messrohr in Schwingung gebracht. Die am Messrohr erzeugten Corioliskräfte bewirken eine Phasenverschiebung der Rohrschwingung (siehe Abbildung):

- Bei Nulldurchfluss (Stillstand des Messstoffs) ist die an den Punkten A und B abgegriffene Schwinqung gleichphasig (ohne Phasendifferenz) (1).
- Bei Massefluss wird die Rohrschwingung einlaufseitig verzögert (2) und auslaufseitig beschleunigt (3).

A00299

Je größer der Massefluss ist, desto größer ist auch die Phasendifferenz (A-B). Mittels elektrodynamischer Sensoren wird die Rohrschwingung ein- und auslaufseitig abgegriffen. Das Messprinzip arbeitet grundsätzlich unabhängig von Temperatur, Druck, Viskosität, Leitfähigkeit und Durchflussprofil.

Dichtemessung

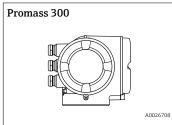
Das Messrohr wird immer in seiner Resonanzfrequenz angeregt. Sobald sich die Masse und damit die Dichte des schwingenden Systems (Messrohr und Messstoff) ändert, regelt sich die Erregerfrequenz automatisch wieder nach. Die Resonanzfrequenz ist somit eine Funktion der Messstoffdichte. Aufgrund dieser Abhängigkeit lässt sich mit Hilfe des Mikroprozessors ein Dichtesignal gewinnen.

Volumenmessung

Daraus lässt sich mit Hilfe des gemessenen Masseflusses auch der Volumenfluss berechnen.

Temperaturmessung

Zur rechnerischen Kompensation von Temperatureffekten wird die Temperatur am Messrohr erfasst. Dieses Signal entspricht der Prozesstemperatur und steht auch als Ausgangssignal zur Verfügung.

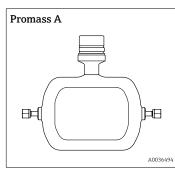

Messeinrichtung

Das Gerät besteht aus Messumformer und Messaufnehmer.

Das Gerät ist als Kompaktausführung verfügbar:

Messumformer und Messaufnehmer bilden eine mechanische Einheit.

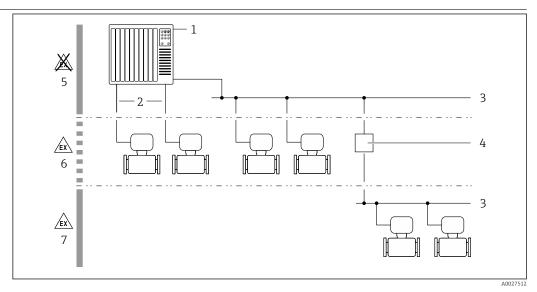
Messumformer


Gehäuseausführungen und Werkstoffe:

- Messumformergehäuse
- Alu, beschichtet: Aluminium, AlSi10Mq, beschichtet
- Rostfrei, hygienisch: Rostfreier Stahl, 1.4404
- Fensterwerkstoff bei Messumformergehäuse aus:
 - Alu, beschichtet: Glas
 - Rostfrei, hygienisch: Polycarbonat

Konfiguration:

- Bedienung von außen via 4-zeiliger, beleuchteter, grafischer Vor-Ort-Anzeige mit Touch-Control und geführten Menüs ("Make-it-run"-Wizards) für anwendungsspezifische Inbetriebnahme.
- Via Serviceschnittstelle oder WLAN-Schnittstelle:
 - Bedientools (z.B. FieldCare, DeviceCare, SmartBlue App)
 - Webserver (Zugriff via Webbrowser z.B. Microsoft Internet Explorer, Microsoft Edge)


Messaufnehmer

- Einrohrsystem für hochgenaue Messung kleinster Durchflüsse
- Gleichzeitige Messung von Durchfluss, Volumenfluss, Dichte und Temperatur (multivariabel)
- Unempfindlich gegenüber Prozesseinflüssen
- Nennweitenbereich: DN 1...4 (1/24... 1/8 ")
- Werkstoffe:
 - Messaufnehmer: Rostfreier Stahl, 1.4404 (316/316L)
 - Messrohr: Rostfreier Stahl, 1.4435 (316/316L); Alloy C22, 2.4602 (UNS N06022)
 - Prozessanschlüsse: Rostfreier Stahl, 1.4404 (316/316L); 1.4435 (316L); Alloy C22, 2.4602 (UNS N06022)

6

Gerätearchitektur

■ 1 Möglichkeiten für die Messgeräteinbindung in ein System

- 1 Automatisierungssystem (z.B. SPS)
- 2 Anschlusskabel (0/4...20 mA HART etc.)
- 3 Feldbus
- 4 Segmentkoppler
- 5 Nicht explosionsgefährdeter Bereich
- 6 Explosionsgefährdeter Bereich: Zone 2; Class I, Division 2
- Explosionsgefährdeter Bereich: Zone 1; Class I, Division 1

Sicherheit

IT-Sicherheit

Eine Gewährleistung unsererseits ist nur gegeben, wenn das Gerät gemäß der Betriebsanleitung installiert und eingesetzt wird. Das Gerät verfügt über Sicherheitsmechanismen, um es gegen versehentliche Veränderung der Einstellungen zu schützen.

IT-Sicherheitsmaßnahmen gemäß dem Sicherheitsstandard des Betreibers, die das Gerät und dessen Datentransfer zusätzlich schützen, sind vom Betreiber selbst zu implementieren.

Gerätespezifische IT Sicherheit

Um die betreiberseitigen Schutzmaßnahmen zu unterstützen, bietet das Gerät einige spezifische Funktionen. Diese Funktionen sind durch den Anwender konfigurierbar und gewährleisten bei korrekter Nutzung eine erhöhte Sicherheit im Betrieb. Eine Übersicht der wichtigsten Funktionen ist im Folgenden beschrieben.

Funktion/Schnittstelle	Werkeinstellung	Empfehlung
Schreibschutz via Hardware-Verriegelungs- schalter → 🖺 8	Nicht aktiviert.	Individuell nach Risikoabschätzung.
Freigabecode (gilt auch für Webserver Login oder FieldCare- Verbindung) → 🖺 8	Nicht aktiviert (0000).	Bei der Inbetriebnahme einen individuel- len Freigabecode vergeben.
WLAN (Bestelloption in Anzeigemodul)	Aktiviert.	Individuell nach Risikoabschätzung.
WLAN Security Modus	Aktiviert (WPA2- PSK)	Nicht verändern.
WLAN-Passphrase (Passwort) → 🖺 8	Seriennummer	Bei der Inbetriebnahme einen individuel- len Freigabecode vergeben.
WLAN Modus	Access Point	Individuell nach Risikoabschätzung.
Webserver → 🖺 8	Aktiviert.	Individuell nach Risikoabschätzung.
Serviceschnittstelle CDI-RJ45 → 🖺 9	_	Individuell nach Risikoabschätzung.

Zugriff mittels Hardwareschreibschutz schützen

Der Schreibzugriff auf die Parameter des Geräts via Vor-Ort-Anzeige, Webbrowser oder Bedientool (z.B. FieldCare, DeviceCare) kann über einen Verriegelungsschalter (DIP-Schalter auf der Hauptelektronikplatine) deaktiviert werden. Bei aktivierten Hardwareschreibschutz ist nur Lesezugriff auf die Parameter möglich.

Der Hardwareschreibschutz ist im Auslieferungszustand deaktiviert.

Zugriff mittels Passwort schützen

Um den Schreibzugriff auf die Parameter des Geräts oder den Zugriff auf das Gerät via der WLAN-Schnittstelle zu schützen, stehen unterschiedliche Passwörter zur Verfügung.

- Anwenderspezifischer Freigabecode
 - Den Schreibzugriff auf die Parameter des Geräts via Vor-Ort-Anzeige, Webbrowser oder Bedientool (z.B. FieldCare, DeviceCare) schützen. Das Zugriffsrecht wird durch die Verwendung eines anwenderspezifischen Freigabecodes klar geregelt.
- WLAN-Passphrase
 - Der Netzwerkschlüssel schützt eine Verbindung zwischen einem Bediengerät (z.B. Notebook oder Tablet) und dem Gerät über die optional bestellbare WLAN-Schnittstelle.
- Infrastruktur Modus
 - Bei Betrieb im Infrastruktur Modus entspricht der WLAN-Passphrase dem betreiberseitig konfigurierten WLAN-Passphrase.

Anwenderspezifischer Freigabecode

Der Schreibzugriff auf die Parameter des Geräts via Vor-Ort-Anzeige, Webbrowser oder Bedientool (z.B. FieldCare, DeviceCare) kann durch den veränderbaren, anwenderspezifischen Freigabecode geschützt werden.

WLAN-Passphrase: Betrieb als WLAN Access Point

Eine Verbindung zwischen einem Bediengerät (z.B. Notebook oder Tablet) und dem Gerät über die optional bestellbare WLAN-Schnittstelle wird durch den Netzwerkschlüssel geschützt. Die WLAN-Authentifizierung des Netzwerkschlüssels ist konform dem Standard IEEE 802.11.

Der Netzwerkschlüssel ist im Auslieferungszustand geräteabhängig vordefiniert. Er kann über das Untermenü **WLAN-Einstellungen** im Parameter **WLAN-Passphrase** angepasst werden.

Infrastruktur Modus

Eine Verbindung zwischen Gerät und dem WLAN Access Point ist anlagenseitig über SSID und Passphrase geschützt. Für einen Zugriff an den zuständigen Systemadministrator wenden.

Allgemeine Hinweise für die Verwendung der Passwörter

- Der bei Auslieferung gültige Freigabecode und Netzwerkschlüssel sollte bei der Inbetriebnahme angepasst werden.
- Bei der Definition und Verwaltung des Freigabecodes bzw. Netzwerkschlüssels sind die allgemein üblichen Regeln für die Generierung eines sicheren Passworts zu berücksichtigen.
- Die Verwaltung und der sorgfältige Umgang mit dem Freigabecode und Netzwerkschlüssel obliegt dem Benutzer.

Zugriff via Webserver

Mit dem integrierten Webserver kann das Gerät über einen Webbrowser bedient und konfiguriert werden. Die Verbindung erfolgt via Serviceschnittstelle (CDI-RJ45) oder WLAN-Schnittstelle. Bei Geräteausführungen mit den Kommunikationsarten EtherNet/IP und PROFINET kann die Verbindung auch über den Anschluss für die Signalübertragung für EtherNet/IP bzw. PROFINET (RJ45 Stecker) aufgebaut werden.

Der Webserver ist im Auslieferungszustand aktiviert. Über den Parameter **Webserver Funktionalität** kann der Webserver bei Bedarf (z.B. nach der Inbetriebnahme) deaktiviert werden.

Die Geräte- und Status-Informationen können auf der Login-Seite ausgeblendet werden. Dadurch wird ein unberechtigtes Auslesen der Informationen unterbunden.

[]i

Zugriff via OPC-UA

Mit dem Anwendungspaket "OPC-UA-Server" kann das Gerät mit OPC-UA Clients kommunizieren.

Der im Gerät integrierte OPC-UA-Server ist über die optional bestellbare WLAN-Schnittstelle via WLAN Access Point oder die Serviceschnittstelle (CDI- RJ45) via Ethernet-Netzwerk verfügbar. Zugriffsrechte und Autorisierung gemäß separater Konfiguration.

Folgende Security Modes werden gemäß OPC-UA Spezifikation (IEC 62541) unterstützt:

- Ohne
- Basic128Rsa15 signiert
- Basic128Rsa15 signiert und verschlüsselt

Zugriff via Serviceschnittstelle (CDI-RJ45)

Das Gerät kann über die Serviceschnittstelle (CDI-RJ45) mit einem Netzwerk verbunden werden. Aufgrund gerätespezifischer Funktionen ist ein sicherer Betrieb des Geräts in einem Netzwerk gewährleistet.

Es wird empfohlen die einschlägige Industrienormen und Richtlinien anzuwenden, die von nationalen und internationalen Sicherheitsausschüssen verfasst wurden wie zum Beispiel IEC/ISA62443 oder IEEE. Hierzu zählen organisatorische Sicherheitsmaßnahmen wie die Vergabe von Zutrittsberechtigungen und auch technische Maßnahmen wie zum Beispiel eine Netzwerksegmentierung.

Eingang

Messgröße

Direkte Messgrößen

- Massefluss
- Dichte
- Temperatur

Berechnete Messgrößen

- Volumenfluss
- Normvolumenfluss
- Normdichte

Messbereich

Messbereich für Flüssigkeiten

DN		Messbereich-Endwerte $\dot{m}_{min(F)}\dot{m}_{max(F)}$	
[mm]	[in]	[kg/h]	[lb/min]
1	1/24	0 20	0 0,735
2	1/12	0 100	0 3,675
4	1/8	0 450	0 16,54

Messbereich für Gase

Der Endwert ist abhängig von der Dichte und der Schallgeschwindigkeit des verwendeten Gases und kann mit folgenden Formeln berechnet werden:

 $\dot{m}_{max(G)} = Minimum \; (\dot{m}_{max(F)} \cdot \rho_G : x \; ; \rho_G \cdot c_G \cdot \pi/2 \cdot (d_i)^2 \cdot 3600)$

ḿ _{max(G)}	Maximaler Endwert für Gas [kg/h]	
m _{max(F)}	Maximaler Endwert für Flüssigkeit [kg/h]	
$\dot{m}_{\max(G)} < \dot{m}_{\max(F)}$	$\dot{m}_{\max(G)}$ kann nie größer werden als $\dot{m}_{\max(F)}$	
ρ_{G}	Gasdichte in [kg/m³] bei Prozessbedingungen	
x	nennweitenabhängige Konstante	
c_{G}	Schallgeschwindigkeit (Gas) [m/s]	
d _i	Messrohrinnendurchmesser [m]	

DN		x
[mm]	[in]	[kg/m³]
1	1/24	32
2	1/12	32
4	1/8	32

Zur Berechnung des Messbereichs: Produktauswahlhilfe Applicator > 🗎 103

Berechnungsbeispiel für Gas

- Messaufnehmer: Promass A, DN 2
- Gas: Luft mit einer Dichte von 11,9 kg/m³ (bei 20 °C und 10 bar)
- Messbereich (Flüssigkeit): 100 kg/h
- $x = 32 \text{ kg/m}^3 \text{ (für Promass A DN 2)}$

Maximal möglicher Endwert:

 $\dot{m}_{\max(G)} = \dot{m}_{\max(F)} \cdot \rho_G : x = 100 \text{ kg/h} \cdot 11,9 \text{ kg/m}^3 : 32 \text{ kg/m}^3 = 37,2 \text{ kg/h}$

Empfohlener Messbereich

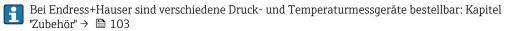
Kapitel "Durchflussgrenze" → 🖺 57

Messdynamik

Über 1000:1.

Durchflüsse oberhalb des eingestellten Endwerts übersteuern die Elektronik nicht, so dass die aufsummierte Durchflussmenge korrekt erfasst wird.

Eingangssignal


Ein- und Ausgangsvarianten

→ 🖺 13

Eingelesene Messwerte

Um die Messgenauigkeit bestimmter Messgrößen zu erhöhen oder für Gase den Normvolumenfluss zu berechnen, kann das Automatisierungssystem kontinuierlich verschiedene Messwerte in das Messgerät schreiben:

- Betriebsdruck zur Steigerung der Messgenauigkeit (Endress+Hauser empfiehlt die Verwendung eines Druckmessgeräts für Absolutdruck, z.B. Cerabar M oder Cerabar S)
- Messstofftemperatur zur Steigerung der Messgenauigkeit (z.B. iTEMP)
- Referenzdichte zur Berechnung des Normvolumenflusses für Gase

Das Einlesen externer Messwerte wird zur Berechnung des Normvolumenfluss empfohlen.

HART-Protokoll

Das Schreiben der Messwerte vom Automatisierungssystem zum Messgerät erfolgt über das HART-Protokoll. Das Druckmessgerät muss folgende protokollspezifische Funktionen unterstützen:

- HART-Protokoll
- Burst-Modus

Stromeingang

Digitale Kommunikation

Das Schreiben der Messwerte vom Automatisierungssystem zum Messgerät kann erfolgen über:

- FOUNDATION Fieldbus
- PROFIBUS DP
- PROFIBUS PA
- Modbus RS485
- EtherNet/IP
- PROFINET

Stromeingang 0/4...20 mA

Stromeingang	0/420 mA (aktiv/passiv)
Strombereich	420 mA (aktiv)0/420 mA (passiv)
Auflösung	1 μΑ
Spannungsabfall	Typisch: 0,6 2 V bei 3,6 22 mA (passiv)
Maximale Eingangsspan- nung	≤ 30 V (passiv)
Leerlaufspannung	≤ 28,8 V (aktiv)
Mögliche Eingangsgrößen	DruckTemperaturDichte

Statuseingang

Maximale Eingangswerte	■ DC $-3 \dots 30 \text{ V}$ ■ Wenn Statuseingang aktiv (ON): $R_i > 3 \text{ k}\Omega$	
Ansprechzeit	Einstellbar: 5 200 ms	
Eingangssignalpegel	 Low-Signal (tief): DC -3 +5 V High-Signal (hoch): DC 12 30 V 	
Zuordenbare Funktionen	 Aus Die einzelnen Summenzähler separat zurücksetzen Alle Summenzähler zurücksetzen Messwertunterdrückung 	

Ausgang

Aus- und Eingangsvarianten

Abhängig von der für den Aus-/Eingang 1 gewählten Option stehen für die weiteren Aus- und Eingänge unterschiedliche Optionen zur Verfügung. Pro Aus-/Eingang 1 ...3 kann jeweils nur eine Option ausgewählt werden. Die Tabelle ist vertikal (\downarrow) zu lesen.

Beispiel: Wenn für Aus-/Eingang 1 die Option BA "4-20 mA HART" gewählt wurde, steht für den Ausgang 2 eine der Optionen A, B, D, E, F, H, I oder J und für den Ausgang 3 eine der Optionen A, B, D, E, F, H, I oder J zur Verfügung.

Bestellmerkmal "Ausgang; Eingang 1" (020) →		Mögliche Optionen								
Stromausgang 420 mA HART	ВА									
Stromausgang 420 mA HART Ex i	\	CA								
FOUNDATION Fieldbus		\	SA							
FOUNDATION Fieldbus Ex i			\	TA						
PROFIBUS DP				4	LA					
PROFIBUS PA					4	GA				
PROFIBUS PA Ex i						\	НА			
Modbus RS485							\	MA		
EtherNet/IP 2-Port Switch integriert								\	NA	
PROFINET 2-Port Switch integriert									\	RA
Bestellmerkmal "Ausgang; Eingang 2" (021) →	\	\	\	\	\	\	\	\	\	\
Nicht belegt	A	Α	Α	Α	Α	Α	Α	Α	Α	Α
Stromausgang 0/420 mA	В		В		В	В		В	В	В
Stromausgang 0/420 mA (Ex i)		С		С			С			
Frei konfigurierbarer Ein-/Ausgang ¹⁾	D		D		D	D		D	D	D
Impuls-/Frequenz-/Schaltausgang	E		Е		Е	Е		Е	Е	Е
Doppelimpulsausgang ²⁾	F							F		
Impuls-/Frequenz-/Schaltausgang (Ex i)		G		G			G			
Relaisausgang	Н		Н		Н	Н		Н	Н	Н
Stromeingang 0/420 mA	I		I		I	I		I	I	I
Statuseingang	J		J		J	J		J	J	J
Bestellmerkmal "Ausgang; Eingang 3" (022) →	↓	\	\	\	\	\	\	\	\	4
Nicht belegt	A	Α	Α	Α	Α	Α	Α	Α	Α	Α
Stromausgang 0/420 mA	В				В			В	В	В
Stromausgang 0/420 mA (Ex i)		С								
Frei konfigurierbarer Ein-/Ausgang	D				D			D	D	D
Impuls-/Frequenz-/Schaltausgang	E				Е			Е	Е	Е
Doppelimpulsausgang (Slave) ²⁾	F							F		
Impuls-/Frequenz-/Schaltausgang (Ex i)		G								
Relaisausgang	Н				Н			Н	Н	Н
Stromeingang 0/420 mA	I				I			I	I	I
Statuseingang	J				J			J	J	J

²⁾ Bei Auswahl Doppelimpulsausgang (F) für den Aus-/Eingang 2 (021) steht für den Aus-/Eingang 3 (022) auch nur noch die Auswahl Doppelimpulsausgang (F) zur Verfügung.

Ausgangssignal

Stromausgang HART

Stromausgang	420 mA HART	
Strombereich	Wahlweise einstellbar: 420 mA (aktiv/passiv)	
	Ex-i, passiv	
Leerlaufspannung	DC 28,8 V (aktiv)	
Maximale Eingangsspan- nung	DC 30 V (passiv)	
Bürde	250 700 Ω	
Auflösung	0,38 μΑ	
Dämpfung	Einstellbar: 0,07 999 s	
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Elektroniktemperatur Schwingungsfrequenz 0 Schwingungsdämpfung 0 Signalasymmetrie Erregerstrom 0 Werfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl. 	

PROFIBUS PA

PROFIBUS PA	Gemäß EN 50170 Volume 2, IEC 61158-2 (MBP), galvanisch getrennt
Datenübertragung	31,25 kbit/s
Stromaufnahme	10 mA
Zulässige Speisespannung	9 32 V
Busanschluss	Mit integriertem Verpolungsschutz

PROFIBUS DP

Signalkodierung	NRZ-Code
Datenübertragung	9,6 kBaud12 MBaud

EtherNet/IP

Standards	Gemäß IEEE 802.3
-----------	------------------

PROFINET

Standards	Gemäß IEEE 802.3

FOUNDATION Fieldbus

FOUNDATION Fieldbus	H1, IEC 61158-2, galvanisch getrennt
Datenübertragung	31,25 kbit/s

Stromaufnahme	10 mA
Zulässige Speisespannung	9 32 V
Busanschluss	Mit integriertem Verpolungsschutz

Modbus RS485

Physikalische Schnittstelle	RS485 gemäß Standard EIA/TIA-485
Abschlusswiderstand	Integriert, über DIP-Schalter aktivierbar

Stromausgang 0/4...20 mA

Stromausgang	0/420 mA
Maximale Ausgangswerte	22,5 mA
Strombereich	Wahlweise einstellbar: • 420 mA (aktiv) • 0/420 mA (passiv) Ex-i, passiv
Leerlaufspannung	DC 28,8 V (aktiv)
Maximale Eingangsspan- nung	DC 30 V (passiv)
Bürde	0 700 Ω
Auflösung	0,38 μΑ
Dämpfung	Einstellbar: 0,07 999 s
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Elektroniktemperatur Schwingungsfrequenz 0 Schwingungsdämpfung 0 Signalasymmetrie Erregerstrom 0 Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.

Impuls-/Frequenz-/Schaltausgang

Funktion	Als Impuls-, Frequenz- oder Schaltausgang wahlweise einstellbar
Ausführung	Open-Collector
	Wahlweise einstellbar: ■ Aktiv ■ Passiv Ex-i, passiv
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Spannungsabfall	Bei 22,5 mA: ≤ DC 2 V
Impulsausgang	
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)

Maximaler Ausgangs- strom	22,5 mA (aktiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Impulsbreite	Einstellbar: 0,05 2 000 ms
Maximale Impulsrate	10 000 Impulse/s
Impulswertigkeit	Einstellbar
Zuordenbare Messgrößen	MasseflussVolumenflussNormvolumenfluss
Frequenzausgang	
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Maximaler Ausgangs- strom	22,5 mA (aktiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Ausgangsfrequenz	Einstellbar: Endfrequenz 2 10000 Hz (f $_{max}$ = 12500 Hz)
Dämpfung	Einstellbar: 0 999 s
Impuls-Pausen-Verhältnis	1:1
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Elektroniktemperatur Schwingungsfrequenz 0 Schwingungsdämpfung 0 Signalasymmetrie Erregerstrom 0 Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.
Schaltausgang	
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Schaltverhalten	Binär, leitend oder nicht leitend
Schaltverzögerung	Einstellbar: 0 100 s
Anzahl Schaltzyklen	Unbegrenzt
Zuordenbare Funktionen	 Aus An Diagnoseverhalten Grenzwert Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Summenzähler 13 Überwachung Durchflussrichtung Status Überwachung teilgefülltes Rohr Schleichmengenunterdrückung Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erwei-

Doppelimpulsausgang

Funktion	Doppelimpuls
Ausführung	Open-Collector
	Wahlweise einstellbar: Aktiv Passiv
Maximale Eingangswerte	DC 30 V, 250 mA (passiv)
Leerlaufspannung	DC 28,8 V (aktiv)
Spannungsabfall	Bei 22,5 mA: ≤ DC 2 V
Ausgangsfrequenz	Einstellbar: 0 1 000 Hz
Dämpfung	Einstellbar: 0 999 s
Impuls-Pausen-Verhältnis	1:1
Zuordenbare Messgrößen	 Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.

Relaisausgang

Funktion	Schaltausgang
Ausführung	Relaisausgang, galvanisch getrennt
Schaltverhalten	Wahlweise einstellbar: NO (normaly open), Werkeinstellung NC (normaly closed)
Maximale Schaltleistung (passiv)	■ DC 30 V, 0,1 A ■ AC 30 V, 0,5 A
Zuordenbare Funktionen	 Aus An Diagnoseverhalten Grenzwert Massefluss Volumenfluss Normvolumenfluss Dichte Normdichte Temperatur Summenzähler 13 Überwachung Durchflussrichtung Status Überwachung teilgefülltes Rohr Schleichmengenunterdrückung Verfügt das Messgerät über ein oder mehrere Anwendungspakete, erweitert sich die Auswahl.

Frei konfigurierbarer Ein-/Ausgang

Einem frei konfigurierbaren Ein-/Ausgang (Konfigurierbares I/O) wird bei der Inbetriebnahme des Geräts \mathbf{ein} spezifischer Ein- oder Ausgang zugeordnet.

Für die Zuordnung stehen folgende Ein- und Ausgänge zur Verfügung:

- Stromausgang wählbar: 4...20 mA (aktiv), 0/4...20 mA (passiv)
- $\blacksquare \ \, \text{Impuls-/Frequenz-/Schaltausgang}$
- Stromeingang wählbar: 4...20 mA (aktiv), 0/4...20 mA (passiv)
- Statuseingang

Die technischen Werte entsprechen denen in diesem Kapitel beschriebenen Ein- und Ausgängen.

Ausfallsignal

Ausfallinformationen werden abhängig von der Schnittstelle wie folgt dargestellt.

Stromausgang HART

Gerätediagnose	Gerätezustand auslesbar via HART-Kommando 48
----------------	--

PROFIBUS PA

Status- und Alarm- meldungen	Diagnose gemäß PROFIBUS PA Profil 3.02
Fehlerstrom FDE (Fault Disconnection Electronic)	0 mA

PROFIBUS DP

Status- und Alarm-	Diagnose gemäß PROFIBUS PA Profil 3.02
meldungen	

EtherNet/IP

Gerätediagnose Gerätezustan	d auslesbar im Input Assembly
-----------------------------	-------------------------------

PROFINET

Gerätediagnose	Gemäß "Application Layer protocol for decentralized periphery", Version 2.3
----------------	---

FOUNDATION Fieldbus

Status- und Alarm- meldungen	Diagnose gemäß FF-891
Fehlerstrom FDE (Fault Disconnection Electronic)	0 mA

Modbus RS485

Fehlerverhalten	Wählbar:
	 NaN-Wert anstelle des aktuellen Wertes
	Letzter gültiger Wert

Stromausgang 0/4...20 mA

4...20~mA

Fehlerverhalten	Wählbar:
	■ 4 20 mA gemäß NAMUR-Empfehlung NE 43
	■ 4 20 mA gemäß US
	■ Min. Wert: 3,59 mA
	■ Max. Wert: 22,5 mA
	• Frei definierbarer Wert zwischen: 3,59 22,5 mA
	Aktueller Wert
	Letzter gültiger Wert

18

0...20 mA

Fehlerverhalten	Wählbar:
	 Maximaler Alarm: 22 mA Frei definierbarer Wert zwischen: 0 20,5 mA
	Frei definierbarer Wert zwischen: U 20,5 mA

Impuls-/Frequenz-/Schaltausgang

Impulsausgang	
Fehlerverhalten	Wählbar: ■ Aktueller Wert ■ Keine Impulse
Frequenzausgang	
Fehlerverhalten	Wählbar: ■ Aktueller Wert ■ 0 Hz ■ Definierter Wert (f max 2 12 500 Hz)
Schaltausgang	
Fehlerverhalten	Wählbar: Aktueller Status Offen Geschlossen

Relaisausgang

Fehlerverhalten	Wählbar: ■ Aktueller Status
	■ Offen
	■ Geschlossen

Vor-Ort-Anzeige

Klartextanzeige	Mit Hinweis zu Ursache und Behebungsmaßnahmen
Hintergrundbeleuchtung	Rote Farbbeleuchtung signalisiert Gerätefehler.

Statussignal gemäß NAMUR-Empfehlung NE 107

Schnittstelle/Protokoll

- Via digitale Kommunikation:
 - HART-Protokoll
 - FOUNDATION Fieldbus
 - PROFIBUS PA
 - PROFIBUS DP
 - Modbus RS485
 - EtherNet/IP
 - PROFINET
- Via Serviceschnittstelle
 - Serviceschnittstelle CDI-RJ45
 - WLAN-Schnittstelle

Klartextanzeige	Mit Hinweis zu Ursache und Behebungsmaßnahmen	
-----------------	---	--

Weitere Informationen zur Fernbedienung $\rightarrow~\equiv~85$

Webserver

Klartextanzeige	Mit Hinweis zu Ursache und Behebungsmaßnahmen
-----------------	---

Leuchtdioden (LED)

Statusinformationen	Statusanzeige durch verschiedene Leuchtdioden
	Je nach Geräteausführung werden folgende Informationen angezeigt: Versorgungsspannung aktiv Datenübertragung aktiv Gerätealarm/-störung vorhanden EtherNet/IP-Netzwerk verfügbar EtherNet/IP-Verbindung hergestellt PROFINET-Netzwerk verfügbar PROFINET-Verbindung hergestellt PROFINET-Verbindung hergestellt PROFINET Blinking-Feature

Ex-Anschlusswerte

Sicherheitstechnische Werte

Bestellmerkmal "Ausgang; Eingang 1"	Ausgangstyp	Sicherheitstechnische Werte "Ausgang; Eingang 1"	
		26 (+)	27 (-)
Option BA	Stromausgang 420 mA HART	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option GA	PROFIBUS PA	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option LA	PROFIBUS DP	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option MA	Modbus RS485	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option SA	FOUNDATION Fieldbus	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option NA	EtherNet/IP	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option RA	PROFINET	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	

Bestellmerkmal	Ausgangstyp	Sicherheitstechnische Werte			e
"Ausgang; Eingang 2"; "Ausgang; Eingang 3"		Ausgang; Eingang 2 Ausgang; Einga		Eingang 3	
5 5. 5		24 (+)	25 (-)	22 (+)	23 (-)
Option B	Stromausgang 420 mA	$U_{\rm N} = 30 \ V_{\rm DC}$ $U_{\rm M} = 250 \ V_{\rm AC}$			
Option D	Frei konfigurierbarer Ein-/Ausgang	$U_{\rm N} = 30 V_{\rm DC}$ $U_{\rm M} = 250 V_{\rm AC}$			
Option E	Impuls-/Frequenz-/ Schaltausgang	$U_{\rm N} = 30 V_{\rm DC}$ $U_{\rm M} = 250 V_{\rm AC}$			
Option F	Doppelimpulsausgang	$U_{\rm N} = 30 \ V_{\rm DC}$ $U_{\rm M} = 250 \ V_{\rm AC}$			
Option H	Relaisausgang	$U_{N} = 30 V_{DC}$ $I_{N} = 100 \text{ mA}_{DC}$ $U_{M} = 250 V_{AC}$			
Option I	Stromeingang 420 mA	$U_{\rm N} = 30 V_{\rm DC}$ $U_{\rm M} = 250 V_{\rm AC}$	2		
Option J	Statuseingang	$U_{\rm N} = 30 V_{\rm DC}$ $U_{\rm M} = 250 V_{\rm AC}$:		

Eigensichere Werte

Bestellmerkmal "Ausgang; Eingang 1"	Ausgangstyp	Eigensichere Werte "Ausgang; Eingang 1"		
		26 (+)	27 (-)	
Option CA	Stromausgang 420 mA HART Ex i	$\begin{split} &U_{i} = 30 \text{ V} \\ &I_{i} = 100 \text{ mA} \\ &P_{i} = 1,25 \text{ W} \\ &L_{i} = 0 \\ &C_{i} = 0 \end{split}$		
Option HA	PROFIBUS PA Ex i	$Ex ia ^{1)} \\ U_i = 30 V \\ l_i = 570 mA \\ P_i = 8,5 W \\ L_i = 10 \ \mu H \\ C_i = 5 \ nF$	Ex ic 2) $U_{i} = 32 \text{ V}$ $l_{i} = 570 \text{ mA}$ $P_{i} = 8.5 \text{ W}$ $L_{i} = 10 \mu\text{H}$ $C_{i} = 5 \text{ nF}$	
Option TA	FOUNDATION Fieldbus Ex i	$\begin{aligned} &\textbf{Ex ia}^{\ 1)} \\ &\textbf{U}_i = 30 \ \text{V} \\ &\textbf{I}_i = 570 \ \text{mA} \\ &\textbf{P}_i = 8,5 \ \text{W} \\ &\textbf{L}_i = 10 \ \mu\text{H} \\ &\textbf{C}_i = 5 \ \text{nF} \end{aligned}$	Ex ic ²⁾ $U_i = 32 \text{ V}$ $I_i = 570 \text{ mA}$ $P_i = 8.5 \text{ W}$ $L_i = 10 \mu\text{H}$ $C_i = 5 \text{ nF}$	

- 1) Nur für Zone 1; Class I, Division 1 Ausführung verfügbar
- 2) Nur für Zone 2; Class I, Division 2 Ausführung verfügbar

Bestellmerkmal	Ausgangstyp	Eigensichere Werte oder NIFW Werte			
"Ausgang; Eingang 2"; "Ausgang; Eingang 3"		Ausgang; Eingang 2		Ausgang; Eingang 3	
3 3, 3		24 (+)	25 (-)	22 (+)	23 (-)
Option C	Stromausgang 420 mA Ex i	$\begin{aligned} &U_{i} = 30 \text{ V} \\ &l_{i} = 100 \text{ mA} \\ &P_{i} = 1,25 \text{ W} \\ &L_{i} = 0 \\ &C_{i} = 0 \end{aligned}$			
Option G	Impuls-/Frequenz-/ Schaltausgang Ex i	$U_{i} = 30 \text{ V}$ $l_{i} = 100 \text{ mA}$ $P_{i} = 1,25 \text{ W}$ $L_{i} = 0$ $C_{i} = 0$			

$\begin{array}{c} Schleichmengenunterdr\"{\mathbf{u}}\text{-}\\ ckung \end{array}$

Die Schaltpunkte für die Schleichmengenunterdrückung sind frei wählbar.

Galvanische Trennung

Die Ausgänge sind zueinander und gegen Erde (PE) galvanisch getrennt.

Protokollspezifische Daten

HART

Hersteller-ID	0x11
Gerätetypkennung	0x3B
HART-Protokoll Revision	7
Gerätebeschreibungsdateien (DTM, DD)	Informationen und Dateien unter: www.endress.com
Bürde HART	Min. 250 Ω
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🖺 104. • Messgrößen via HART-Protokoll • Burst Mode Funktionalität

PROFIBUS PA

Hersteller-ID	0x11
Ident number	0x156D
Profil Version	3.02
Gerätebeschreibungsdateien (GSD, DTM, DD)	Informationen und Dateien unter: www.endress.com www.profibus.org
Unterstützte Funktionen	 Identification & Maintenance Einfachste Geräteidentifizierung seitens des Leitsystems und des Typenschildes PROFIBUS Up-/Download Bis zu 10 Mal schnelleres Parameterschreiben und -lesen durch PROFIBUS Up-/Download Condensed Status Einfachste und selbsterklärende Diagnoseinformationen durch Kategorisierung auftretender Diagnosemeldungen
Konfiguration der Geräteadresse	 ■ DIP-Schalter auf dem I/O-Elektronikmodul ■ Vor-Ort-Anzeige ■ Via Bedientools (z.B. FieldCare)
Kompatibilität zum Vorgängermodell	Bei einem Geräteaustausch unterstützt das Messgerät Promass 300 grund- sätzlich die Kompatibilität der zyklischen Daten zu den Vorgängermodellen. Eine Anpassung der Projektierung des PROFIBUS Netzwerks mit der Promass 300 GSD-Datei ist nicht notwendig.
	Vorgängermodelle: Promass 80 PROFIBUS PA - ID-Nr.: 1528 (Hex) - Extended GSD Datei: EH3x1528.gsd - Standard GSD Datei: EH3_1528.gsd Promass 83 PROFIBUS PA - ID-Nr.: 152A (Hex) - Extended GSD Datei: EH3x152A.gsd - Standard GSD Datei: EH3_152A.gsd
	Beschreibung des Funktionsumfangs der Kompatibilität: Betriebsanleitung → 🖺 104.
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🖺 104. ■ Zyklische Datenübertragung ■ Blockmodell ■ Beschreibung der Module

PROFIBUS DP

Hersteller-ID	0x11
Ident number	0x156F
Profil Version	3.02
Gerätebeschreibungsdateien (GSD, DTM, DD)	Informationen und Dateien unter: ■ www.endress.com Auf der Produktseite des Geräts: Dokumente/Software → Gerätetreiber ■ www.profibus.org
Unterstützte Funktionen	 Identification & Maintenance Einfachste Geräteidentifizierung seitens des Leitsystems und des Typenschildes PROFIBUS Up-/Download Bis zu 10 Mal schnelleres Parameterschreiben und -lesen durch PROFIBUS Up-/ Download Condensed Status Einfachste und selbsterklärende Diagnoseinformationen durch Kategorisierung auftretender Diagnosemeldungen
Konfiguration der Gerätead- resse	 DIP-Schalter auf dem I/O-Elektronikmodul via Bedientools (z.B. FieldCare)

Kompatibilität zum Vorgängermodell	Bei einem Geräteaustausch unterstützt das Messgerät Promass 300 grundsätzlich die Kompatibilität der zyklischen Daten zu den Vorgängermodellen. Eine Anpassung der Projektierung des PROFIBUS Netzwerks mit der Promass 300 GSD-Datei ist nicht notwendig.			
	Vorgängermodell: Promass 83 PROFIBUS DP - ID-Nr.: 1529 (Hex) - Extended GSD Datei: EH3x1529.gsd - Standard GSD Datei: EH3_1529.gsd			
	Beschreibung des Funktionsumfangs der Kompatibilität: Betriebsanleitung $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
Systemintegration	Informationen zur Systemintegration: Betriebanleitung $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
	 Zyklische Datenübertragung Blockmodell Beschreibung der Module			

EtherNet/IP

Protokoll	■ The CIP Networks Library Volume 1: Common Industrial Protocol ■ The CIP Networks Library Volume 2: EtherNet/IP Adaptation of CIP					
Kommunikationstyp	■ 10Base-T ■ 100Base-TX					
Geräteprofil	Generisches Gerät (Product type: 0x2B)					
Hersteller-ID	0x11					
Gerätetypkennung	0x103B					
Baudraten	Automatische ¹⁰ / ₁₀₀ Mbit mit Halbduplex- und Vollduplex-Erkennung					
Polarität	Auto-Polarität für die automatische Korrektur von gekreuzten TxD- und RxD-Paaren					
Unterstützte CIP-Verbindungen	Max. 3 Verbindungen					
Explizite Verbindungen	Max. 6 Verbindungen					
I/O-Verbindungen	Max. 6 Verbindungen (Scanner)					
Konfigurationsmöglichkeiten für Messgerät	 DIP-Schalter auf dem Elektronikmodul für IP-Adressierung Herstellerspezifische Software (FieldCare) Add-On-Profile Level 3 für Rockwell Automation Leitsysteme Webbrowser Electronic Data Sheet (EDS) im Messgerät integriert 					
Konfiguration der EtherNet- Schnittstelle	 Geschwindigkeit: 10 MBit, 100 MBit, Auto (Werkeinstellung) Duplex: Halbduplex, Vollduplex, Auto (Werkeinstellung) 					
Konfiguration der Gerätead- resse	 DIP-Schalter auf dem Elektronikmodul für IP-Adressierung (letztes Oktett) DHCP Herstellerspezifische Software (FieldCare) Add-On-Profile Level 3 für Rockwell Automation Leitsysteme Webbrowser EtherNet/IP-Tools, z.B. RSLinx (Rockwell Automation) 					
Device Level Ring (DLR)	Ja					
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🖺 104. ■ Zyklische Datenübertragung ■ Blockmodell ■ Ein- und Ausgangsgruppen					

PROFINET

Protokoll	"Application layer protocol for decentral device periphery and distributed automation", Version 2.3						
Kommunikationstyp	100 MBit/s						
Konformitätsklasse	Conformance Class B						
Netzlastklasse	Netload Class II						
Baudraten	Automatische 100 Mbit/s mit Vollduplex-Erkennung						
Zykluszeiten	Ab 8 ms						
Polarität	Auto-Polarität für die automatische Korrektur von gekreuzten TxD- und RxD- Paaren						
Media Redundancy Protocol (MRP)	Ja						
Geräteprofil	Application interface identifier 0xF600 Generisches Gerät						
Hersteller-ID	0x11						
Gerätetypkennung	0x843B						
Gerätebeschreibungsdateien (GSD, DTM, DD)	Informationen und Dateien unter: ■ www.endress.com Auf der Produktseite des Geräts: Dokumente/Software → Gerätetreiber ■ www.profibus.org						
Unterstützte Verbindungen	 1 x AR (IO Controller AR) 1 x AR (IO-Supervisor Device AR connection allowed) 1 x Input CR (Communication Relation) 1 x Output CR (Communication Relation) 1 x Alarm CR (Communication Relation) 						
Konfigurationsmöglichkeiten für Messgerät	 DIP-Schalter auf dem Elektronikmodul, für die Vergabe des Gerätenamens (letzter Teil) Herstellerspezifische Software (FieldCare, DeviceCare) Webbrowser Gerätestammdatei (GSD), ist über den integrierten Webserver des Messgeräts auslesbar 						
Konfiguration des Gerätenamens	 DIP-Schalter auf dem Elektronikmodul, für die Vergabe des Gerätenamens (letzter Teil) DCP Protokoll Process Device Manager (PDM) Integrierter Webserver 						
Unterstützte Funktionen	 Identification & Maintenance Einfachste Geräteidentifizierung über:						
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🗎 104. Zyklische Datenübertragung Übersicht und Beschreibung der Module Kodierung des Status Startup-Parametrierung Werkeinstellung						

FOUNDATION Fieldbus

Hersteller-ID	0x452B48 (hex)
Ident number	0x103B (hex)
Geräterevision	1
DD-Revision	Informationen und Dateien unter:
CFF-Revision	www.endress.comwww.fieldbus.org
Interoperability Test Kit (ITK)	Revisionsstand 6.2.0
ITK Test Campaign Number	Informationen: www.endress.com www.fieldbus.org
Link-Master-fähig (LAS)	Ja
Wählbar zwischen "Link Mas- ter" und "Basic Device"	Ja Werkeinstellung: Basic Device
Knotenadresse	Werkeinstellung: 247 (0xF7)
Unterstützte Funktionen	Folgende Methoden werden unterstützt: Restart ENP Restart Diagnostic Set to OOS Set to AUTO Read trend data Read event logbook
Virtual Communication Relation	onships (VCRs)
Anzahl VCRs	44
Anzahl Link-Objekte in VFD	50
Permanente Einträge	1
Client VCRs	0
Server VCRs	10
Source VCRs	43
Sink VCRs	0
Subscriber VCRs	43
Publisher VCRs	43
Device Link Capabilities	
Slot-Zeit	4
Min. Verzögerung zwischen PDU	8
Max. Antwortverzögerung	16
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🖺 104. ■ Zyklische Datenübertragung ■ Beschreibung der Module ■ Ausführungszeiten ■ Methoden

Modbus RS485

Protokoll	Modbus Applications Protocol Specification V1.1
Antwortzeiten	 Direkter Datenzugriff: Typisch 25 50 ms Auto-Scan-Puffer (Datenbereich): Typisch 3 5 ms
Gerätetyp	Slave

Slave-Adressbereich	1 247
Broadcast-Adressbereich	0
Funktionscodes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast-Messages	Unterstützt von folgenden Funktionscodes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Unterstützte Baudrate	■ 1200 BAUD ■ 2400 BAUD ■ 4800 BAUD ■ 9600 BAUD ■ 19200 BAUD ■ 38400 BAUD ■ 57600 BAUD ■ 115200 BAUD
Modus Datenübertragung	■ ASCII ■ RTU
Datenzugriff	Auf jeden Geräteparameter kann via Modbus RS485 zugegriffen werden. Zu den Modbus-Registerinformationen
Kompatibilität zum Vorgängermodell	Bei einem Geräteaustausch unterstützt das Messgerät Promass 300 grundsätzlich die Kompatibilität der Modbus-Register für die Prozessgrößen und Diagnoseinformationen zum Vorgängermodell Promass 83. Eine Anpassung der Projektierung im Automatisierungssystem ist nicht notwendig. Beschreibung des Funktionsumfangs der Kompatibilität: Betriebsanleitung → 🖺 104.
Systemintegration	Informationen zur Systemintegration: Betriebsanleitung → 🗎 104. Modbus RS485-Informationen Funktionscodes Register-Informationen Antwortzeit Modbus-Data-Map

Energieversorgung

Klemmenbelegung

Messumformer: Versorgungsspannung, Ein-/Ausgänge

HART

Versorgungsspannung		Ein-/Ausgang 1		Ein-/Ausgang 2		Ein-/Ausgang 3	
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (+)	23 (-)
		Die Klemmenbelegung ist von der jeweiligen Bestellvariante des Geräts abhängig $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $					

FOUNDATION Fieldbus

Versorgungsspannung		Ein-/Ausgang 1		Ein-/Ausgang 2		Ein-/Ausgang 3	
1 (+)	2 (-)	26 (A)	27 (B)	24 (+)	25 (-)	22 (+)	23 (-)
		Die Klemmenbelegung ist von der jeweiligen Bestellvariante des Geräts abhängig → 🖺 13.					

PROFIBUS PA

Versorgung	Versorgungsspannung		Ein-/Ausgang 1		Ein-/Ausgang 2		Ein-/Ausgang 3	
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)	
		Die Klemme	Die Klemmenbelegung ist von der jeweiligen Bestellvariante des Geräts abhängig → 🖺 13.					

PROFIBUS DP

Versorgung	Versorgungsspannung		Ein-/Ausgang 1		Ein-/Ausgang 2		Ein-/Ausgang 3	
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)	
		Die Klemmenbelegung ist von der jeweiligen Bestellvariante des Geräts abhängig → 🖺 13.						

Modbus RS485

Versorgungsspannung		Ein-/Ausgang 1		Ein-/Ausgang 2		Ein-/Ausgang 3	
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)
		Die Klemmenbelegung ist von der jeweiligen Bestellvariante des Geräts abhängig → 🖺 13.					

PROFINET

Versorgung	gsspannung	Ein-/Ausgang 1	Ein-/Ausgang 2		Ein-/Ausgang 3	
1 (+)	2 (-)	PROFINET (RJ45 Stecker)			22 (+) on der jeweilig abhängig → 🖺	,

EtherNet/IP

Versorgungsspannung		Ein-/Ausgang 1	Ein-/Au	isgang 2	Ein-/Au	isgang 3
1 (+)	2 (-)	EtherNet/IP (RJ45 Stecker)		25 (–) ibelegung ist v te des Geräts a		

Verfügbare Gerätestecker

Gerätestecker dürfen nicht in explosionsgefährdeten Bereichen eingesetzt werden!

Gerätestecker für Feldbusse:

Bestellmerkmal "Eingang; Ausgang 1"

- Option **SA** "FOUNDATION Fieldbus" \rightarrow 🗎 27
- Option **GA** "PROFIBUS PA" \rightarrow 🖺 28
- Option RA "PROFINET" \rightarrow 🗎 28
- Option **NA** "EtherNet/IP" → 🖺 28

Gerätestecker für den Anschluss an die Serviceschnittstelle:

Bestellmerkmal "Zubehör montiert"

Option **NB**, Adapter RJ45 M12 (Serviceschnittstelle) → 🖺 29

Bestellmerkmal "Eingang; Ausgang 1", Option SA "FOUNDATION Fieldbus"

Bestellmerkmal		Kabeleinführung/	Anschluss → 🖺 31
	"Elektrischer Anschluss"	2	3
	M, 3, 4, 5	Stecker 7/8"	-

Bestellmerkmal "Eingang; Ausgang 1", Option GA "PROFIBUS PA"

Bestellmerkmal	Kabeleinführung/	Anschluss → 🖺 31
"Elektrischer Anschluss"	2	3
L, N, P, U	Stecker M12 × 1	-

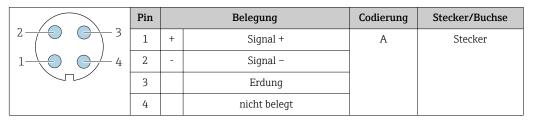
Bestellmerkmal "Eingang; Ausgang 1", Option RA "PROFINET"

Bestellmerkmal	Kabeleinführung/Anschluss → 🗎 31		
"Elektrischer Anschluss"	2	3	
L, N, P, U	Stecker M12 × 1	-	
R ¹⁾²⁾ , S ¹⁾²⁾ , T ¹⁾²⁾ , V ¹⁾²⁾	Stecker M12 × 1	Stecker M12 × 1	

- Nicht kombinierbar mit einer externen WLAN-Antenne (Bestellmerkmal "Zubehör beigelegt", Option P8), eines RJ45 M12 Adapters für die Serviceschnittstelle (Bestellmerkmal "Zubehör montiert", Option NB) oder des abgesetzten Anzeige- und Bedienmoduls DKX001.
- 2) Geeignet für die Einbindung des Geräts in eine Ringtopologie.

Bestellmerkmal "Eingang; Ausgang 1", Option NA "EtherNet/IP"

Bestellmerkmal	Kabeleinführung/Anschluss → 🖺 31		
"Elektrischer Anschluss"	2	3	
L, N, P, U	Stecker M12 × 1	-	
R ¹⁾²⁾ , S ¹⁾²⁾ , T ¹⁾²⁾ , V ¹⁾²⁾	Stecker M12 × 1	Stecker M12 × 1	

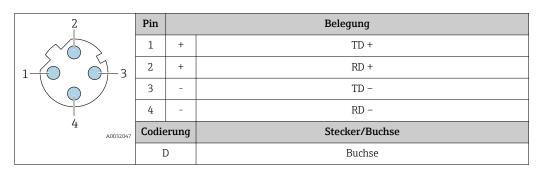

- Nicht kombinierbar mit einer externen WLAN-Antenne (Bestellmerkmal "Zubehör beigelegt", Option P8), eines RJ45 M12 Adapters für die Serviceschnittstelle (Bestellmerkmal "Zubehör montiert", Option NB) oder des abgesetzten Anzeige- und Bedienmoduls DKX001
- 2) Geeignet für die Einbindung des Geräts in eine Ringtopologie.

Bestellmerkmal "Zubehör montiert", Option NB "Adapter RJ45 M12 (Serviceschnittstelle)"

	Bestellmerkmal	Kabeleinführung/Anschluss → 🖺 31			
	"Zubehör montiert"	Kabeleinführung 2	Kabeleinführung 3		
Ī	NB	Stecker M12 × 1	-		

Pinbelegung Gerätestecker

FOUNDATION Fieldbus



PROFIBUS PA

_ (Pin		Belegung	Codierung	Stecker/Buchse
2 /	3	1	+	PROFIBUS PA +	A	Stecker
1	4	2		Erdung		

3	-	PROFIBUS PA -	
4		nicht belegt	

PROFINET

Als Stecker wird empfohlen:

- Binder, Serie 763, Teilenr. 99 3729 810 04
- Phoenix, Teilenr. 1543223 SACC-M12MSD-4Q
- Beim Geräteeinsatz im explosionsgefährdeten Bereich: Entsprechend zertifizierten Stecker verwenden.

EtherNet/IP

2	Pin		Belegung
	1	+	Tx
1 3	2	+	Rx
	3	-	Tx
	4	-	Rx
4 A0032047	Codie	rung	Stecker/Buchse
	I)	Buchse

Als Stecker wird empfohlen:

- Binder, Serie 763, Teilenr. 99 3729 810 04
- Phoenix, Teilenr. 1543223 SACC-M12MSD-4Q
- Beim Geräteeinsatz im explosionsgefährdeten Bereich: Entsprechend zertifizierten Stecker verwenden.

Serviceschnittstelle

Bestellmerkmal "Zubehör montiert", Option NB: Adapter RJ45 M12 (Serviceschnittstelle)

2	Pin		Belegung
	1	+	Tx
1 3	2	+	Rx
	3	-	Tx
	4	-	Rx
4 A0032047	Codie	erung	Stecker/Buchse
	I)	Buchse

Als Stecker wird empfohlen:

- Binder, Serie 763, Teilenr. 99 3729 810 04
- Phoenix, Teilenr. 1543223 SACC-M12MSD-4Q
- Beim Geräteeinsatz im explosionsgefährdeten Bereich: Entsprechend zertifizierten Stecker verwenden.

Versorgungsspannung

Bestellmerkmal "Energieversorgung"	Klemmenspannung		Frequenzbereich
Option D	DC 24 V	±20%	-
Option E	AC 100 240 V	-15+10%	50/60 Hz

Bestellmerkmal "Energieversorgung"	Klemmenspannung		Frequenzbereich
Ontion	DC 24 V	±20%	_
Option I	AC 100 240 V	-15+10%	50/60 Hz

Leistungsaufnahme

Messumformer

Max. 10 W (Wirkleistung)

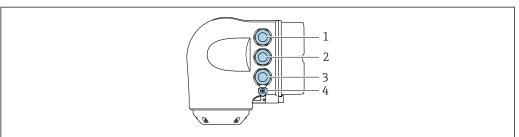
Einschaltstrom	Max. 36 A (nach NAMUR Empfehlung NE21)
----------------	--

Stromaufnahme

Messumformer

- Max. 400 mA (24 V)
- Max. 200 mA (110 V, 50/60 Hz; 230 V, 50/60 Hz)

Versorgungsausfall


- Summenzähler bleiben auf dem zuletzt ermittelten Wert stehen.
- Konfiguration bleibt je nach Geräteausführung im Gerätespeicher oder im steckbaren Datenspeicher (HistoROM DAT) erhalten.
- Fehlermeldungen inklusive Stand des Betriebsstundenzählers werden abgespeichert.

Elektrischer Anschluss

Anschluss Messumformer

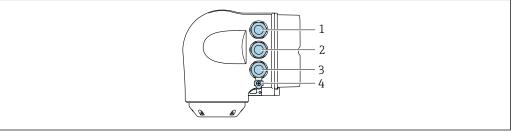
- Klemmenbelegung → 🖺 26

A002678

- 1 Anschluss Versorgungsspannung
- 2 Anschluss Signalübertragung Ein-/Ausgang
- 3 Anschluss Signalübertragung Ein-/Ausgang oder Anschluss für Netzwerk Verbindung über Serviceschnittstelle (CDI-RJ45); Optional: Anschluss externe WLAN-Antenne oder Anschluss abgesetztes Anzeige- und Bedienmodul DKX001
- 4 Schutzerde (PE)
- Optional ist ein Adapter für RJ45 auf M12 Stecker erhältlich: Bestellmerkmal "Zubehör", Option **NB**: "Adapter RJ45 M12 (Serviceschnittstelle)"

Der Adapter verbindet die Serviceschnittstelle (CDI-RJ45) mit einem in der Kabeleinführung montierten M12 Stecker. Der Anschluss an die Serviceschnittstelle kann dadurch ohne Öffnen des Geräts über einen M12 Stecker erfolgen.

Pi Netzwerk Verbindung über Serviceschnittstelle (CDI-RJ45) → 🖺 91

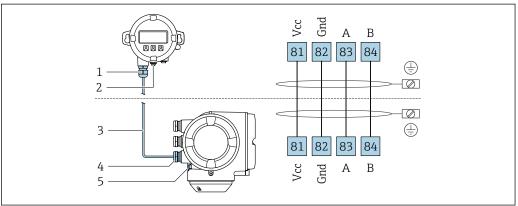

In einer Ringtopologie anschließen

Geräteausführungen mit den Kommunikationsarten EtherNet/IP und PROFINET können in eine Ringtopologie eingebunden werden. Die Einbindung erfolgt über den Anschluss für die Signalübertragung (Ausgang 1) und dem Anschluss an die Serviceschnittstelle (CDI-RJ45).

Messumformer in eine Ringtopologie einbinden:

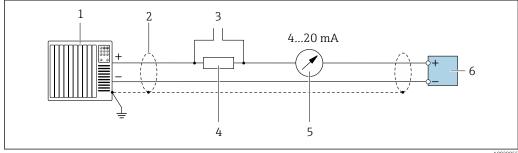
- EtherNet/IP → 🖺 89
- PROFINET → 🖺 90

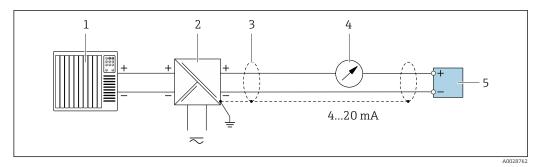
A0026781


- 1 Anschluss Versorgungsspannung
- 2 Anschluss Signalübertragung: PROFINET bzw. EtherNet/IP (RJ45 Stecker)
- 3 Anschluss an Serviceschnittstelle (CDI-RJ45)
- 4 Schutzerde (PE)

Verfügt das Gerät über weitere Ein-/Ausgänge, werden diese parallel über die Kabeleinführung für den Anschluss an die Serviceschnittstelle (CDI-RJ45) geführt.

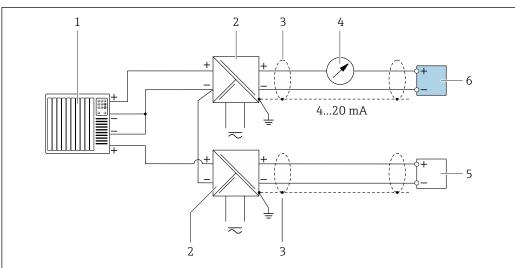
Anschluss abgesetztes Anzeige- und Bedienmodul DKX001


- Das abgesetztes Anzeige- und Bedienmodul DKX001 ist nur für folgende Gehäuseausführung verfügbar: Bestellmerkmal "Gehäuse": Option A "Alu, beschichtet"
- Bei der direkten Bestellung des abgesetzten Anzeige- und Bedienmoduls DKX001 mit dem Messgerät, wird das Messgerät immer mit einem Blinddeckel ausgeliefert. Eine Anzeige oder Bedienung am Messumformer ist in dem Fall nicht vorhanden.
- Bei nachträglicher Bestellung darf das abgesetzte Anzeige- und Bedienmodul DKX001 nicht gleichzeitig mit dem vorhandenen Anzeigemodul des Messgeräts angeschlossen werden. Es darf immer nur eine Anzeige oder Bedienung am Messumformer angeschlossen sein.


- Abgesetztes Anzeige- und Bedienmodul DKX001
- Schutzerde (PE) 2
- Verbindungskabel 3
- Messgerät
- Schutzerde (PE)

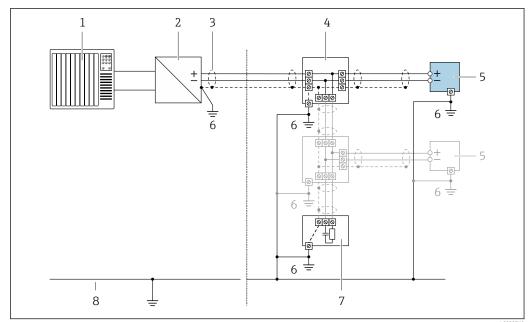
Anschlussbeispiele

Stromausgang 4...20 mA HART

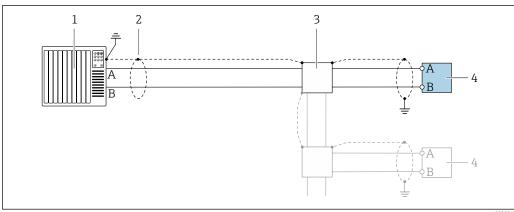


- **₽** 2 Anschlussbeispiel für Stromausgang 4...20 mA HART (aktiv)
- Automatisierungssystem mit Stromeingang (z.B. SPS)
- Kabelschirm, beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabel-2 spezifikation beachten $\rightarrow \stackrel{-}{\cong} 40$
- 3 Anschluss für HART-Bediengeräte → 🖺 85
- 4 Widerstand für HART-Kommunikation ($\geq 250 \Omega$): Maximale Bürde beachten $\Rightarrow \triangleq 14$
- Analoges Anzeigeinstrument: Maximale Bürde beachten → 🖺 14
- Messumformer

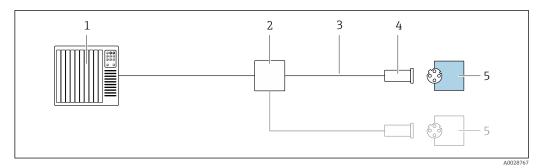
- 3 Anschlussbeispiel für Stromausgang 4...20 mA HART (passiv)
- 1 Automatisierungssystem mit Stromeingang (z.B. SPS)
- 2 Spannungsversorgung
- 4 Analoges Anzeigeinstrument: Maximale Bürde beachten → 🖺 14
- 5 Messumformer


HART-Eingang

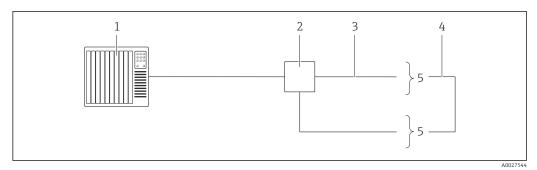
A0028763


- 4 Anschlussbeispiel für HART-Eingang mit gemeinsamem "Minus" (passiv)
- 1 Automatisierungssystem mit HART-Ausgang (z.B. SPS)
- 2 Speisetrenner für Spannungsversorgung (z.B. RN221N)
- 3 Kabelschirm, beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten
- 4 Analoges Anzeigeinstrument: Maximale Bürde beachten
- Druckmessgerät (z.B. Cerabar M, Cerabar S): Anforderungen beachten
- 6 Messumformer

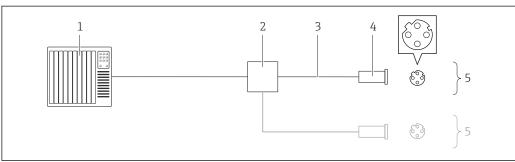
PROFIBUS PA


- **₽** 5 Anschlussbeispiel für PROFIBUS PA
- 1 Automatisierungssystem (z.B. SPS)
- Segmentkoppler PROFIBUS PA
- 3 Kabelschirm, beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten
- T-Verteiler 4
- 5 Messgerät
- 6 Lokale Erdung
- Busabschluss (Terminator)
- Potentialausgleichsleiter

PROFIBUS DP


- € 6 Anschlussbeispiel für PROFIBUS DP, nicht explosionsgefährdeter Bereich und Zone 2/Div. 2
- Automatisierungssystem (z.B. SPS) 1
- 2 Kabelschirm, beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten
- 3 Verteilerbox
- Messumformer
- Bei Baudraten > 1,5 MBaud muss eine EMV-Kabeleinführung verwendet werden und der Kabelschirm muss möglichst bis zur Anschlussklemme weiterlaufen.

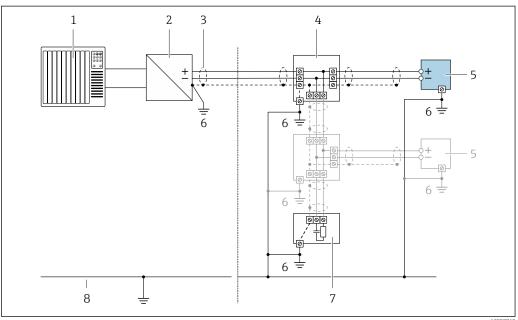
EtherNet/IP


- **№** 7 Anschlussbeispiel für EtherNet/IP
- Automatisierungssystem (z.B. SPS)
- 2 Ethernet-Switch
- 3 Kabelspezifikation beachten
- Gerätestecker 4
- Messumformer

EtherNet/IP: DLR (Device Level Ring)


- 1 Automatisierungssystem (z.B. SPS)
- Ethernet-Switch
- 2 3
- Verbindungskabel zwischen den beiden Messumformern
- Messumformer

PROFINET


- ₽8 Anschlussbeispiel für PROFINET
- Automatisierungssystem (z.B. SPS)
- 2 Ethernet-Switch
- 3 Kabelspezifikation beachten
- 4 Gerätestecker
- Messumformer

PROFINET: MRP (Media Redundancy Protocol)

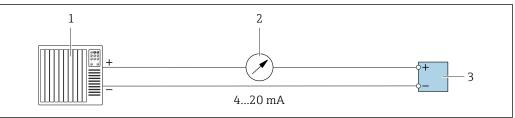
- 1 Automatisierungssystem (z.B. SPS)
- 2 Ethernet-Switch
- 3
- Verbindungskabel zwischen den beiden Messumformern
- Messumformer

FOUNDATION Fieldbus

9 Anschlussbeispiel für FOUNDATION Fieldbus

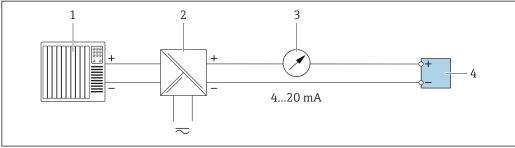
- 1 Automatisierungssystem (z.B. SPS)
- 2 Power Conditioner (FOUNDATION Fieldbus)
- 3 Kabelschirm, beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten T-Verteiler
- Messgerät 5
- Lokale Erdung 6
- Busabschluss (Terminator)
- Potentialausgleichsleiter

36


Modbus RS485

 \blacksquare 10 Anschlussbeispiel für Modbus RS485, nicht explosionsgefährdeter Bereich und Zone 2; Class I, Division 2

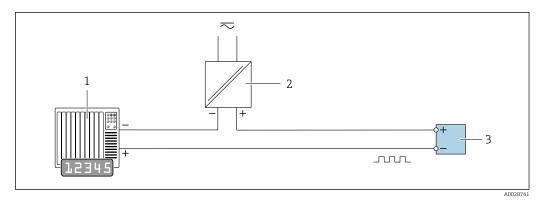
- 1 Automatisierungssystem (z.B. SPS)
- 2 Kabelschirm, beidseitige Erdung des Kabelschirms notwendig zur Erfüllung der EMV-Anforderungen; Kabelspezifikation beachten
- 3 Verteilerbox
- 4 Messumformer


Stromausgang 4-20 mA

A002875

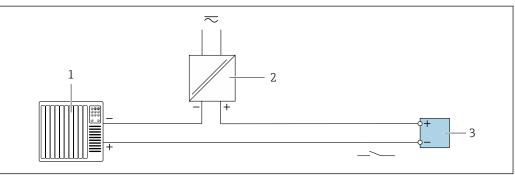
■ 11 Anschlussbeispiel für Stromausgang 4-20 mA (aktiv)

- 1 Automatisierungssystem mit Stromeingang (z.B. SPS)
- 2 Analoges Anzeigeinstrument: Maximale Bürde beachten
- 3 Messumformer



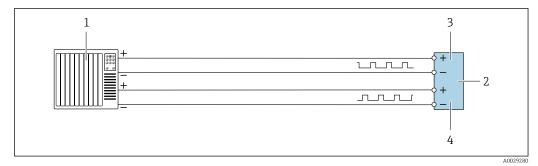
A0028759

■ 12 Anschlussbeispiel für Stromausgang 4-20 mA (passiv)

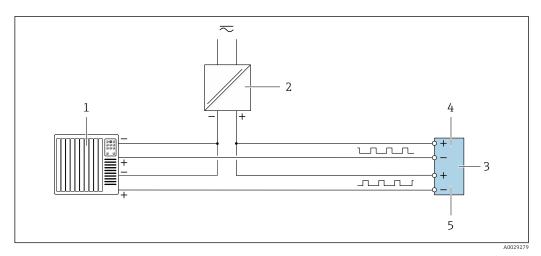

- 1 Automatisierungssystem mit Stromeingang (z.B. SPS)
- 2 Speisetrenner für Spannungsversorgung (z.B. RN221N)
- 3 Analoges Anzeigeinstrument: Maximale Bürde beachten
- 4 Messumformer

Impuls-/Frequenzausgang

- 13 Anschlussbeispiel für Impuls-/Frequenzausgang (passiv)
- 1 Automatisierungssystem mit Impuls-/Frequenzeingang (z.B. SPS)
- 2 Spannungsversorgung
- 3 Messumformer: Eingangswerte beachten $\rightarrow \triangleq 15$

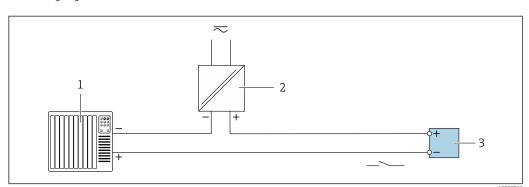

Schaltausgang

A00287


- 14 Anschlussbeispiel f
 ür Schaltausgang (passiv)
- 1 Automatisierungssystem mit Schalteingang (z.B. SPS)
- 2 Spannungsversorgung

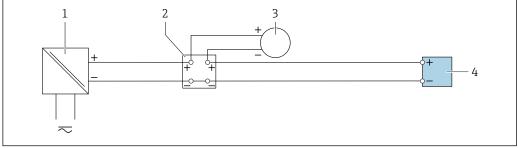
Doppelimpulsausgang

- 15 Anschlussbeispiel für Doppelimpulsausgang (aktiv)
- 1 Automatisierungssystem mit Doppelimpulseingang (z.B. SPS)
- 2 Messumformer: Eingangswerte beachten → 🗎 17
- 3 Doppelimpulsausgang
- 4 Doppelimpulsausgang (Slave), phasenverschoben


38

Anschlussbeispiel für Doppelimpulsausgang (passiv)

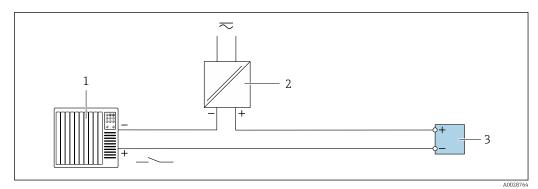
- $Automatisierungs system\ mit\ Doppelimpulseing ang\ (z.B.\ SPS)$
- Spannungsversorgung
- 2 3 $Messum former: Eingangswerte beachten \rightarrow \implies 17$
- 4 5 Doppelimpulsausgang
- Doppelimpulsausgang (Slave), phasenverschoben


Relaisausgang

■ 17 Anschlussbeispiel für Relaisausgang (passiv)

- Automatisierungssystem mit Relaiseingang (z.B. SPS)
- Spannungsversorgung
- 2 3

Stromeingang



№ 18 Anschlussbeispiel für 4...20 mA Stromeingang

- Spannungsversorgung
- Klemmenkasten
- Externes Messgerät (für Einlesen von z.B. Druck oder Temperatur)

Messumformer

Statuseingang

Anschlussbeispiel f
 Transchlussbeispiel f
 Transchlussb

- 1 Automatisierungssystem mit Statusausgang (z.B. SPS)
- 2 Spannungsversorgung
- 3 Messumformer

Potenzialausgleich

Anforderungen

Spezielle Maßnahmen für den Potenzialausgleich sind nicht erforderlich.

Um eine einwandfreie Messung zu gewährleisten, folgende Punkte beachten:

- Messstoff und Messaufnehmer auf demselben elektrischen Potenzial
- Betriebsinterne Erdungskonzepte

Klemmen

Federkraftklemmen: Für Litzen und Litzen mit Aderendhülsen geeignet. Leiterquerschnitt $0,2 \dots 2,5 \text{ mm}^2$ (24 \dots 12 AWG).

Kabeleinführungen

- Kabelverschraubung: M20 × 1,5 mit Kabel Ø 6 ... 12 mm (0,24 ... 0,47 in)
- Gewinde für Kabeleinführung:
 - NPT ½"
 - G ½"
 - M20

Kabelspezifikation

Zulässiger Temperaturbereich

- Die im jeweiligen Land geltenden Installationsrichtlinien sind zu beachten.
- Die Kabel müssen für die zu erwartenden Minimal- und Maximaltemperaturen geeignet sein.

Energieversorgungskabel

Normales Installationskabel ausreichend.

Signalkabel

Stromausgang 4...20 mA HART

Abgeschirmtes Kabel empfohlen. Erdungskonzept der Anlage beachten.

PROFIBUS PA

Verdrilltes, abgeschirmtes Zweiaderkabel. Empfohlen wird Kabeltyp A.

Für weitere Hinweise zur Planung und Installation von PROFIBUS Netzwerken:

- Betriebsanleitung "PROFIBUS DP/PA: Leitfaden zur Projektierung und Inbetriebnahme" (BA00034S)
- PNO-Richtlinie 2.092 "PROFIBUS PA User and Installation Guideline"
- IEC 61158-2 (MBP)

PROFIBUS DP

IEC 61158 spezifiziert zwei Kabeltypen (A und B) für die Busleitung, die für alle Übertragungsraten eingesetzt werden können. Empfohlen wird Kabeltyp A.

Kabeltyp	A	
Wellenwiderstand	135 165 Ω bei einer Messfrequenz von 3 20 MHz	
Kabelkapazität	< 30 pF/m	
Aderquerschnitt	0,34 mm ² (22 AWG)	
Kabeltyp	aarweise verdrillt	
Schleifenwiderstand	≤ 110 Ω/km	
Signaldämpfung	Max. 9 dB über die ganze Länge des Leitungsquerschnitts	
Abschirmung	Kupfer-Geflechtschirm oder Geflechtschirm mit Folienschirm. Bei Erdung des Kabelschirms: Erdungskonzept der Anlage beachten.	

Für weitere Hinweise zur Planung und Installation von PROFIBUS Netzwerken:

- Betriebsanleitung "PROFIBUS DP/PA: Leitfaden zur Projektierung und Inbetriebnahme" (BA00034S)
- PNO-Richtlinie 2.092 "PROFIBUS PA User and Installation Guideline"
- IEC 61158-2 (MBP)

EtherNet/IP

Standard ANSI/TIA/EIA-568-B.2 Annex spezifiziert als Minimalanforderung für ein Kabel, das für EtherNet/IP eingesetzt wird, CAT 5. Empfohlen werden CAT 5e und CAT 6.

Für weitere Hinweise zur Planung und Installation von EtherNet/IP-Netzwerken: "Media Planning and Installation Manual. EtherNet/IP" der ODVA-Organisation

PROFINET

Standard IEC 61156-6 spezifiziert als Minimalanforderung für ein Kabel, das für PROFINET eingesetzt wird, CAT 5. Empfohlen werden CAT 5e und CAT 6.

Für weitere Hinweise zur Planung und Installation von PROFINET-Netzwerken: "PROFINET Cabling and Interconnection Technology", Guideline for PROFINET

FOUNDATION Fieldbus

Verdrilltes, abgeschirmtes Zweiaderkabel.

Für weitere Hinweise zur Planung und Installation von FOUNDATION Fieldbus Netzwerken:

- Betriebsanleitung "FOUNDATION Fieldbus Overview" (BA00013S)
- FOUNDATION Fieldbus-Richtlinie
- IEC 61158-2 (MBP)

Modbus RS485

Standard EIA/TIA-485 spezifiziert zwei Kabeltypen (A und B) für die Busleitung, die für alle Übertragungsraten eingesetzt werden können. Empfohlen wird Kabeltyp A.

Kabeltyp	A	
Wellenwiderstand	135 165 Ω bei einer Messfrequenz von 3 20 MHz	
Kabelkapazität	< 30 pF/m	
Aderquerschnitt	> 0,34 mm ² (22 AWG)	
Kabeltyp	Paarweise verdrillt	
Schleifenwiderstand	≤ 110 Ω/km	
Signaldämpfung	Max. 9 dB über die ganze Länge des Leitungsquerschnitts	
Abschirmung	Kupfer-Geflechtschirm oder Geflechtschirm mit Folienschirm. Bei Erdung des Kabelschirms: Erdungskonzept der Anlage beachten.	

Stromausgang 0/4...20 mA

Normales Installationskabel ausreichend.

Impuls-/Frequenz-/Schaltausgang

Normales Installationskabel ausreichend.

Doppelimpulsausgang

Normales Installationskabel ausreichend.

Relaisausgang

Normales Installationskabel ausreichend.

Stromeingang 0/4...20 mA

Normales Installationskabel ausreichend.

Statuseingang

Normales Installationskabel ausreichend.

$Verbindungskabel\ Messumformer-Abgesetztes\ Anzeige-\ und\ Bedien modul\ DKX001$

Standardkabel

Ein Standardkabel ist als Verbindungskabel verwendbar.

Standardkabel	4 Adern (2 Paare); paarverseilt mit gemeinsamen Schirm	
Schirmung	Kupfer-Geflecht verzinnt, optische Abdeckung ≥ 85 %	
Kapazität Ader/Schirm Maximal 1000 nF für Zone 1; Class I, Division 1		
L/R	Maximal 24 μ H/ Ω für Zone 1; Class I, Division 1	
Kabellänge	Maximal 300 m (1000 ft), siehe nachfolgende Tabelle	

Querschnitt	Kabellänge bei Einsatz im: Nicht explosionsgefährdetem Bereich Explosionsgefährdetem Bereich: Zone 2; Class I, Division 2 Explosionsgefährdetem Bereich: Zone 1; Class I, Division 1
0,34 mm ² (22 AWG)	80 m (270 ft)
0,50 mm ² (20 AWG)	120 m (400 ft)
0,75 mm ² (18 AWG)	180 m (600 ft)
1,00 mm ² (17 AWG)	240 m (800 ft)
1,50 mm ² (15 AWG)	300 m (1000 ft)

Optional lieferbares Verbindungskabel

Standardkabel	$2\times2\times0.34~\text{mm}^2$ (22 AWG) PVC-Kabel $^{1)}$ mit gemeinsamem Schirm (2 Paare, paarverseilt)
Flammwidrigkeit	Nach DIN EN 60332-1-2
Ölbeständigkeit	Nach DIN EN 60811-2-1
Schirmung	Kupfer-Geflecht verzinnt, optische Abdeckung ≥ 85 %
Kapazität Ader/Schirm	≤ 200 pF/m
L/R	≤ 24 μH/Ω
Lieferbare Kabellänge	10 m (35 ft)
Dauerbetriebstemperatur	Bei fester Verlegung: -50 +105 °C (-58 +221 °F); bewegt: -25 +105 °C (-13 +221 °F)

UV-Strahlung kann zu Beeinträchtigung des Kabelaußenmantels führen. Das Kabel möglichst vor Sonneneinstrahlung schützen.

Leistungsmerkmale

Referenzbedingungen

- Fehlergrenzen in Anlehnung an ISO 11631
- Wasser mit +15 ... +45 °C (+59 ... +113 °F) bei 2 ... 6 bar (29 ... 87 psi)
- Angaben laut Kalibrationsprotokoll
- Angaben zur Messabweichung basieren auf akkreditierten Kalibrieranlagen, die auf ISO 17025 rückgeführt sind.

Maximale Messabweichung

v.M. = vom Messwert; $1 \text{ g/cm}^3 = 1 \text{ kg/l}$; T = Messstofftemperatur

Grundgenauigkeit

Berechnungsgrundlagen → 🖺 45

Masse- und Volumenfluss (Flüssigkeiten)

±0,10 % v.M.

Massefluss (Gase)

±0,35 % v.M.

Dichte (Flüssigkeiten)

Unter Referenzbedingungen	Standarddichte- kalibrierung ¹⁾	Wide-Range- Dichtespezifikation ^{2) 3)}
[g/cm³]	[g/cm³]	[g/cm³]
±0,0005	±0,02	±0,002

- 1) Gültig über den gesamten Temperatur- und Dichtebereich
- 2) Gültiger Bereich für Sonderdichtekalibrierung: 0 ... 2 g/cm³, +5 ... +80 °C (+41 ... +176 °F)
- 3) Bestellmerkmal "Anwendungspaket", Option EE "Sonderdichte" nur in Kombination mit Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, HA, SA

Temperatur

 $\pm 0.5 \text{ °C} \pm 0.005 \cdot \text{T °C} (\pm 0.9 \text{ °F} \pm 0.003 \cdot (\text{T} - 32) \text{ °F})$

Nullpunktstabilität

Standardausführung: Bestellmerkmal Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, HA, SA

DN		Nullpunk	tstabilität
[mm]	[in]	[kg/h]	[lb/min]
1	1/24	0,0005	0,00018
2	1/12	0,0025	0,00009
4	1/8	0,0100	0,00036

Hochdruckausführung: Bestellmerkmal Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB

DN		Nullpunk	tstabilität
[mm]	[in]	[kg/h]	[lb/min]
1	1/24	0,0008	0,0000288
2	1/12	0,0040	0,000144
4	1/8	0,0160	0,000576

Durchflusswerte

Durchflusswerte als Turndown-Kennzahlen abhängig von der Nennweite.

SI-Einheiten

DN	1:1	1:10	1:20	1:50	1:100	1:500
[mm]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]	[kg/h]
1	20	2	1	0,4	0,2	0,04
2	100	10	5	2	1	0,2
4	450	45	22,5	9	4,5	0,9

US-Einheiten

DN	1:1	1:10	1:20	1:50	1:100	1:500
[inch]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]	[lb/min]
1/24	0,735	0,074	0,037	0,015	0,007	0,001
1/12	3,675	0,368	0,184	0,074	0,037	0,007
1/8	16,54	1,654	0,827	0,331	0,165	0,033

Genauigkeit der Ausgänge

Die Ausgänge weisen die folgende Grundgenauigkeit auf.

Stromausgang

Genauigkeit	±5 μA

Impuls-/Frequenzausgang

v.M. = vom Messwert

Genauigkeit Max. ±50 ppm v.M. (über den kompletten Umgebungstemperaturbereich)	
--	--

Wiederholbarkeit

v.M. = vom Messwert; 1 g/cm 3 = 1 kg/l; T = Messstofftemperatur

Grund-Wiederholbarkeit

Berechnungsgrundlagen → 🖺 45

Masse- und Volumenfluss (Flüssigkeiten)

 ± 0.05 % v.M.

Massefluss (Gase)

 ± 0.15 % v.M.

Dichte (Flüssigkeiten)

 $\pm 0,00025 \text{ g/cm}^3$

Temperatur

 $\pm 0.25 \text{ °C} \pm 0.0025 \cdot \text{T °C} (\pm 0.45 \text{ °F} \pm 0.0015 \cdot (\text{T}-32) \text{ °F})$

Reaktionszeit

Die Reaktionszeit ist abhängig von der Parametrierung (Dämpfung).

Einfluss Umgebungstemperatur

Stromausgang

Temperaturk	toeffizient	Max. 1 μA/°C

Impuls-/Frequenzausgang

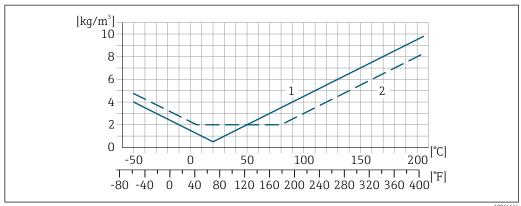
Temperaturkoeffizient	Kein zusätzlicher Effekt. In Genauigkeit enthalten.
-----------------------	---

Einfluss Messstofftemperatur

Massefluss und Volumenfluss

v.E. = vom Endwert

Bei einer Temperaturdifferenz zwischen der Temperatur beim Nullpunktabgleich und der Prozesstemperatur, beträgt die zusätzliche Messabweichung der Messaufnehmer typisch ±0,0002 % v.E./°C $(\pm 0,0001 \% \text{ v. E./°F}).$


Bei einer Durchführung des Nullpunktabgleichs bei Prozesstemperatur wird der Einfluss verringert.

Dichte

Bei einer Temperaturdifferenz zwischen der Dichte-Kalibriertemperatur und der Prozesstemperatur, beträgt die Messabweichung der Messaufnehmer typisch $\pm 0,00005 \text{ g/cm}^3$ /°C ($\pm 0,000025 \text{ g/cm}^3$ /°F). Felddichteabgleich ist möglich.

Wide-Range-Dichtespezifikation (Sonderdichtekalibrierung)

Befindet sich die Prozesstemperatur außerhalb des gültigen Bereiches (→ 🖺 43) beträgt die Messabweichung $\pm 0,00005 \text{ g/cm}^3 / ^{\circ}\text{C} (\pm 0,000025 \text{ g/cm}^3 / ^{\circ}\text{F})$

- Felddichteabgleich, Beispiel bei +20 ℃ (+68 ℉)
- Sonderdichtekalibrierung

Einfluss Messstoffdruck

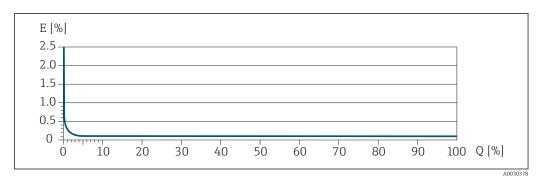
Eine Druckdifferenz zwischen Kalibrierdruck und Prozessdruck hat keinen Einfluss auf die Messgenauigkeit.

Berechnungsgrundlagen

v.M. = vom Messwert, v.E. = vom Endwert

BaseAccu = Grundgenauigkeit in % v.M., BaseRepeat = Grund-Wiederholbarkeit in % v.M.

MeasValue = Messwert; ZeroPoint = Nullpunktstabilität

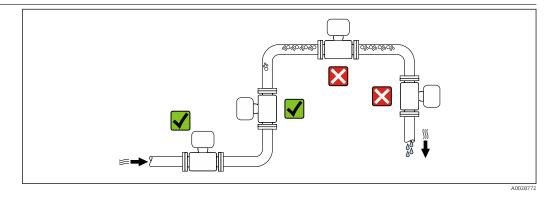

Berechnung der maximalen Messabweichung in Abhängigkeit von der Durchflussrate

Durchflussrate	maximale Messabweichung in % v.M.
$\geq \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± BaseAccu
A0021332	N0021333
$< \frac{\text{ZeroPoint}}{\text{BaseAccu}} \cdot 100$	± ZeroPoint MeasValue · 100
A0021333	A0021334

Berechnung der maximalen Wiederholbarkeit in Abhängigkeit von der Durchflussrate

Durchflussrate		maximale Wiederholbarkeit in % v.M.	
$\geq \frac{\frac{1}{2} \cdot ZeroPoint}{BaseRepeat} \cdot 100$		± BaseRepeat	40
	A0021335	144-4-1	
< ¹ / ₂ ⋅ ZeroPoint ⋅ 100		± ½ · ZeroPoint MeasValue · 100	
	A0021336	A002133	37

Beispiel maximale Messabweichung

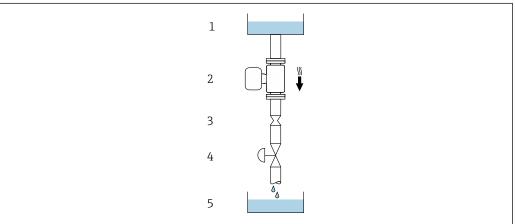

- E Maximale Messabweichung in % v.M. (Beispiel)
- Q Durchflussrate in % vom maximalen Endwert

Montage

Grundsätzlich sind keine besonderen Montagevorkehrungen wie Abstützungen oder Ähnliches erforderlich. Externe Kräfte werden durch konstruktive Gerätemerkmale abgefangen.

Für zusätzliche Stabilität in der Prozessleitung und bei nicht geflanschten Prozessanschlüssen: Sensorhalterung verwenden. → 🖺 49

Montageort



Um Messfehler aufgrund von Gasblasenansammlungen im Messrohr zu vermeiden, folgende Einbauorte in der Rohrleitung vermeiden:

- Einbau am höchsten Punkt der Leitung
- Einbau unmittelbar vor einem freien Rohrauslauf in einer Fallleitung

Bei einer Fallleitung

Folgender Installationsvorschlag ermöglicht dennoch den Einbau in eine offene Fallleitung. Rohrverengungen oder die Verwendung einer Blende mit kleinerem Querschnitt als die Nennweite verhindern das Leerlaufen des Messaufnehmers während der Messung.

A0029773

■ 20 Einbau in eine Fallleitung (z.B. bei Abfüllanwendungen)

- 1 Vorratstank
- 2 Messaufnehmer
- 3 Blende, Rohrverengung
- 4 Ventil
- 5 Abfüllbehälter

D	N	Ø Blende, Rohrverengung			
[mm]	[in]	[mm]	[in]		
1	1/24	0,8	0,03		
2	1/12	1,5	0,06		
4	1/8	3,0	0,12		

Einbaulage

Die Pfeilrichtung auf dem Messaufnehmer-Typenschild hilft, den Messaufnehmer entsprechend der Durchflussrichtung einzubauen (Fließrichtung des Messstoffs durch die Rohrleitung).

	Empfehlung		
A	Vertikale Einbaulage	A0015591	1)
В	Horizontale Einbaulage Messumformer oben	A0015589	✓ ²⁾

	Einbaulage									
С	Horizontale Einbaulage Messumformer unten	A0015590	√ 3)							
D	Horizontale Einbaulage Messumformer seitlich	A0015592	✓							

- 1) Um die Selbstentleerung zu gewährleisten, wird diese Einbaulage empfohlen.
- 2) Anwendungen mit tiefen Prozesstemperaturen können die Umgebungstemperatur senken. Um die minimale Umgebungstemperatur für den Messumformer einzuhalten, wird diese Einbaulage empfohlen.
- 3) Anwendungen mit hohen Prozesstemperaturen können die Umgebungstemperatur erhöhen. Um die maximale Umgebungstemperatur für den Messumformer einzuhalten, wird diese Einbaulage empfohlen.

Wenn ein Messaufnehmer mit gebogenem Messrohr horizontal eingebaut wird: Messaufnehmerposition auf die Messstoffeigenschaften abstimmen.

Ein- und Auslaufstrecken

Spezielle Montagehinweise

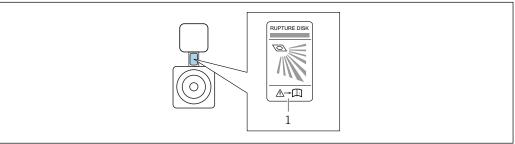
Entleerbarkeit

Bei vertikalem Einbau kann das Messrohr vollständig entleert und vor Ablagerungen geschützt werden, wenn die Eigenschaften der gemessenen Flüssigkeit dies erlauben. Da außerdem nur ein Messrohr verwendet wird, wird die Strömung nicht behindert und das Risiko einer Produktrückhaltung innerhalb des Messgeräts minimiert. Der größere Innendurchmesser des Messrohrs ¹⁾ reduziert zudem das Risiko, dass Partikel im Messsystem stecken bleiben und ist aufgrund des größeren Querschnitts des einzelnen Messrohres auch generell weniger verstopfungsanfällig.

Berstscheibe

Prozessrelevante Informationen: $\rightarrow \implies 57$.

A WARNUNG


Gefährdung durch austretende Messstoffe!

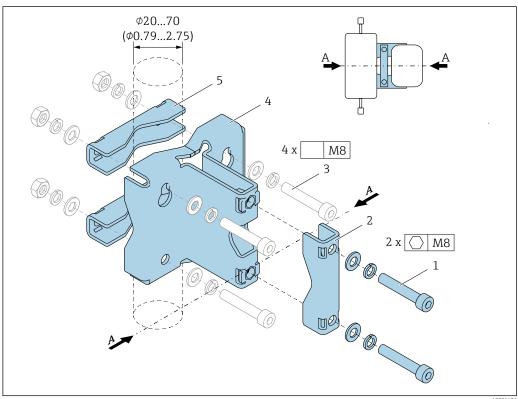
Unter Druck austretende Messstoffe können zu Verletzungen oder Sachschaden führen.

- ► Vorkehrungen treffen, um Personengefährdung und Schaden beim Auslösen der Berstscheibe auszuschließen.
- ▶ Angaben auf dem Berstscheibenaufkleber beachten.
- ▶ Beim Einbau des Geräts darauf achten, dass die Funktion der Berstscheibe nicht behindert wird.
- ▶ Berstscheibe nicht entfernen oder beschädigen.

Die Lage der Berstscheibe ist durch einen darauf angebrachten Aufkleber gekennzeichnet. Ein Auslösen der Berstscheibe zerstört den Aufkleber und ist somit optisch kontrollierbar.

Bei Benutzung der Sensorhalterung mit einem Messgerät mit Berstscheibe muss darauf geachtet werden, dass die Berstöffnung im Hals nicht verdeckt und die Abdeckung der Berstscheibe nicht beschädigt wird.

A003205


1 Hinweisschild zur Berstscheibe

¹⁾ Im Vergleich zu Doppelrohrdesigns mit ähnlicher Durchflusskapazität mit Messrohren und kleinerem Innendurchmesser

Angaben zu den Abmessungen: Kapitel "Konstruktiver Aufbau" (Zubehör)

Sensorhalterung

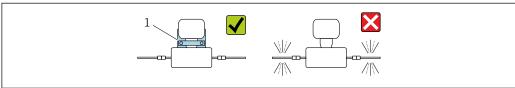
Zur Befestigung an Wand, Tisch oder Rohr wird die Sensorhalterung verwendet (Bestellmerkmal "Zubehör beigelegt", Option PR).

- 1 2 x Innensechskantschraube M8 x 50, Unterlegscheibe und Federring A4
- 2 1 x Klemmbügel (Hals Messgerät)
- 3 4 x Befestigungsschraube für Wand-, Tisch- oder Rohrmontage (Nicht im Lieferumfang enthalten)
- 1 x Grundprofil
- 5 2 x Klemmbügel (Rohrmontage)
- Zentrallinie Messgerät

Bei Benutzung der Halterung mit einem Messgerät mit Berstscheibe muss darauf geachtet werden, dass die Berstscheibe im Hals nicht verdeckt und die Abdeckung der Berstscheibe nicht beschädigt wird.

Alle Schraubverbindungen vor Montage fetten. Schrauben für Wand-, Tisch oder Rohrmontage befinden sich nicht im Lieferumfang und müssen entsprechend der Einbausituation ausgewählt werden.

WARNUNG


Belastung der Rohrleitung!

Zu hohe Belastung einer nicht gestützten Rohrleitung kann zu einem Bruch führen.

Messaufnehmer in ausreichend gestützte Rohrleitung einbauen.

Für den Einbau werden nachfolgende Monatagevarianten empfohlen:

Mit Hilfe der Sensorhalterung.

Sensorhalterung (Bestellmerkmal "Zubehör beigelegt", Option PR)

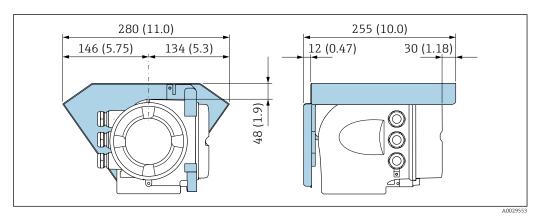
Wandmontage

Die Sensorhalterung mit vier Schrauben an die Wand schrauben. Zwei der vier Befestigungslöcher sind zum Einhängen in die Schrauben ausgeführt.

Tischmontage

Die Sensorhalterung mit vier Schrauben auf die Tischfläche schrauben.

Rohrmontage


Die Sensorhalterung mit zwei Klemmbügeln am Rohr festschrauben.

Nullpunktabgleich

Ein Nullpunktabgleich ist erfahrungsgemäß nur in speziellen Fällen empfehlenswert:

- Bei höchsten Ansprüchen an die Messgenauigkeit und geringen Durchflussmengen.
- Bei extremen Prozess- oder Betriebsbedingungen, z.B. bei sehr hohen Prozesstemperaturen oder sehr hoher Viskosität des Messstoffes.

Wetterschutzhaube

Umgebung

Umgebungstemperaturbereich

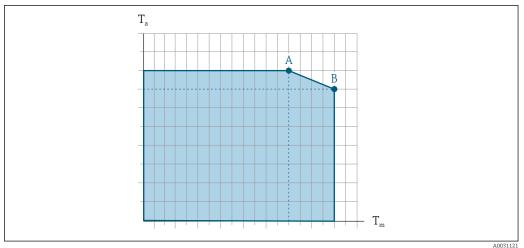
Messgerät	■ -40 +60 °C (-40 +140 °F) ■ Bestellmerkmal "Test, Zeugnis", Option JP: -50 +60 °C (-58 +140 °F)
Ablesbarkeit der Vor- Ort-Anzeige	$-20 \dots +60 ^{\circ}\text{C} (-4 \dots +140 ^{\circ}\text{F})$ Außerhalb des Temperaturbereichs kann die Ablesbarkeit der Vor-Ort-Anzeige beeinträchtigt sein.

- Abhängigkeit Umgebungstemperatur zu Messstofftemperatur → 🖺 51
- Bei Betrieb im Freien:
 Direkte Sonneneinstrahlung vermeiden, besonders in wärmeren Klimaregionen.
- Eine Wetterschutzhaube kann bei Endress+Hauser bestellt werden → 🖺 101.

Lagerungstemperatur

-50 ... +80 °C (−58 ... +176 °F)

Klimaklasse


DIN EN 60068-2-38 (Prüfung Z/AD)

Messgerät Schutzart ■ Standardmäßig: IP66/67, Type 4X enclosure ■ Bei geöffnetem Gehäuse: IP20, Type 1 enclosure ■ Anzeigemodul: IP20, Type 1 enclosure • Bei Bestellmerkmal "Sensoroptionen", Option CM: Zusätzlich IP69 bestellbar Externe WLAN-Antenne IP67 Vibrationsfestigkeit Schwingen sinusförmig in Anlehnung an IEC 60068-2-6 - 2 ... 8,4 Hz, 3,5 mm peak - 8,4 ... 2000 Hz, 1 g peak Schwingen Breitbandrauschen in Anlehnung an IEC 60068-2-64 - 10 ... 200 Hz, 0,003 g²/Hz - 200 ... 2 000 Hz, 0,001 q²/Hz - Total: 1,54 g rms Schockfestigkeit Schock halbsinus in Anlehnung an IEC 60068-2-27 6 ms 50 g Stoßfestigkeit Stoß durch raue Handhabung in Anlehnung an IEC 60068-2-31 Innenreinigung CIP-Reinigung SIP-Reinigung Optionen Öl- und fettfreie Ausführung für mediumberührende Teile, ohne Erklärung Bestellmerkmal "Dienstleistung", Option HA • Nach IEC/EN 61326 und NAMUR-Empfehlung 21 (NE 21) Elektromagnetische Verträglichkeit (EMV) • Geräteausführung mit PROFIBUS DP: Erfüllt Emissionsgrenzwerte für Industrie nach EN 50170 Volume 2, IEC 61784 Für PROFIBUS DP gilt: Bei Baudraten > 1,5 MBaud muss eine EMV-Kabeleinführung verwendet werden und der Kabelschirm muss möglichst bis zur Anschlussklemme weiterlaufen. Details sind in der Konformitätserklärung ersichtlich.

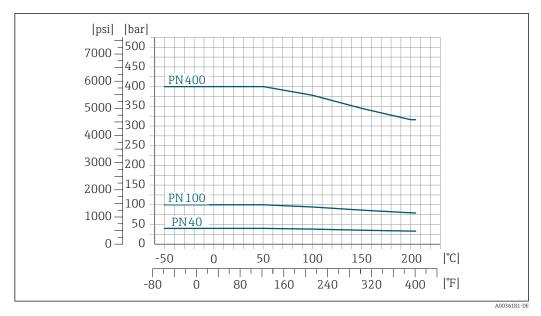
Prozess

 $\textbf{Messstofftemperaturbereich} \qquad -50 \; ... \; +205 \; ^{\circ}\!\text{C} \; (-58 \; ... \; +401 \; ^{\circ}\!\text{F})$

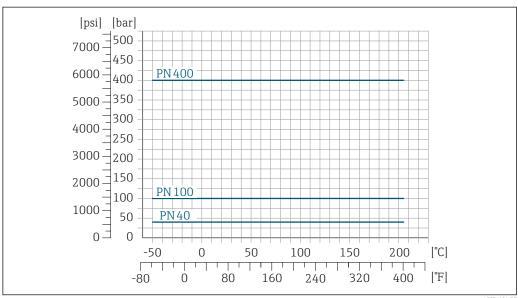
Abhängigkeit Umgebungstemperatur zu Messstofftemperatur

- 🛮 21 🛮 Beispielhafte Darstellung, Werte in der nachfolgenden Tabelle.
- T_a Umgebungstemperatur
- T_m Messstofftemperatur
- A Maximal zulässige Messstofftemperatur T_m bei $T_{a max}$ = 60 °C (140 °F); höhere Messstofftemperaturen T_m erfordern eine Reduktion der Umgebungstemperatur T_a
- B Maximal zulässige Umgebungstemperatur T_a bei der maximal spezifizierten Messstofftemperatur T_m des Messaufnehmers

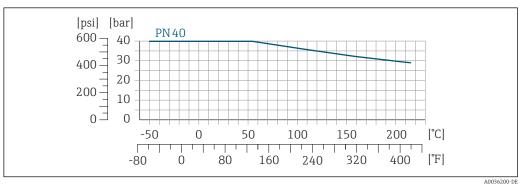
Nicht isoliert				Isoliert					
A B				A		В			
T _a	T _m	Ta	T _m	T _a	T _m	T _a	T_{m}		
60 °C (140 °F)	205 °C (401 °F)	-	ı	60 °C (140 °F)	120 °C (248 °F)	55 ℃ (131 ℉)	205 °C (401 °F)		


Messstoffdichte

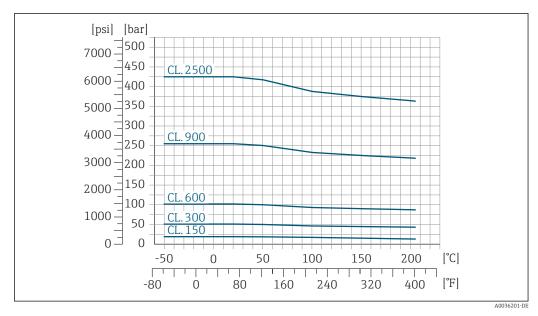
 $0 \dots 5\,000 \; kg/m^3$ (0 $\dots 312 \; lb/cf)$


Druck-Temperatur-Kurven

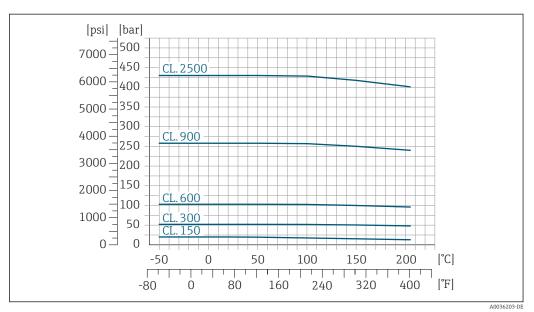
Die folgenden Druck-Temperatur-Kurven beziehen sich auf alle drucktragenden Teile des Geräts und nicht nur auf den Prozessanschluss. Die Kurven zeigen den maximal erlaubten Messstoffdruck in Abhängigkeit von der jeweiligen Messstofftemperatur.


Flanschanschluss in Anlehnung an EN 1092-1 (DIN 2501)

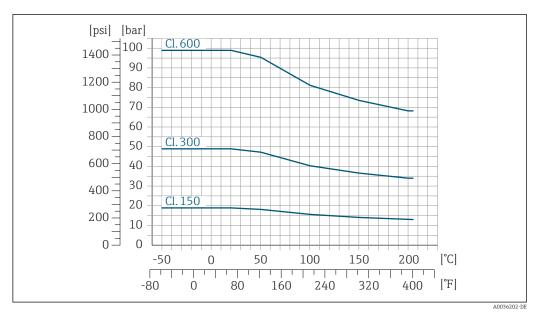
Mit Flanschwerkstoff: 1.4404 (316/316L)



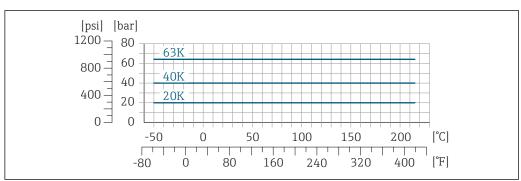
23 Mit Flanschwerkstoff: Alloy C22, 2.4602 (UNS N06022)



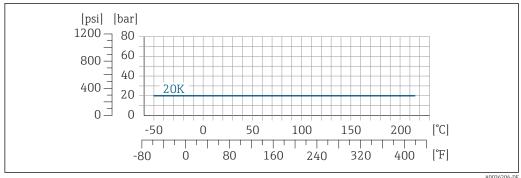
€ 24 Losflansch mit Flanschwerkstoff: 1.4301 (F304), mediumsberührende Teile Alloy C22: 2.4602 (UNS N06022)


Flanschanschluss in Anlehnung an ASME B16.5

■ 25 Mit Flanschwerkstoff: 1.4404 (316/316L)



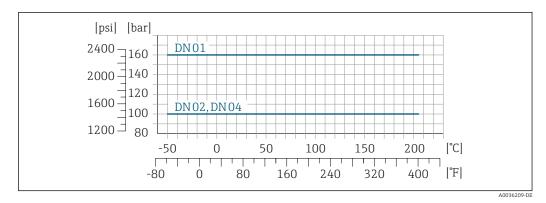
■ 26 Mit Flanschwerkstoff: Alloy C22, 2.4602 (UNS N06022)



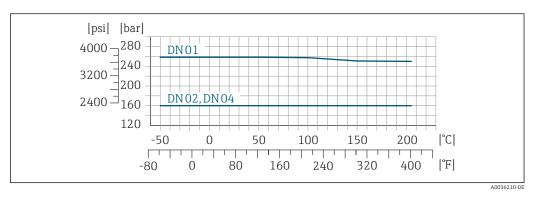
■ 27 Losflansch mit Flanschwerkstoff: 1.4301 (F304), mediumsberührende Teile Alloy C22: 2.4602 (UNS N06022)

Flanschanschluss nach JIS B2220

Mit Flanschwerkstoff: 1.4404 (316/316L) oder Alloy C22, 2.4602 (UNS N06022)

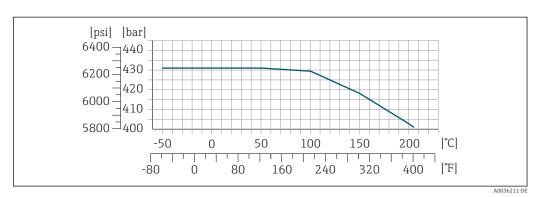


№ 29 Losflansch mit Flanschwerkstoff: 1.4301 (F304), mediumsberührende Teile Alloy C22: 2.4602 (UNS N06022)


Tri-Clamp-Prozessanschluss

Die Clamp-Anschlüsse sind bis zu einem maximalen Druck von 40 bar (580 psi) geeignet. Die Einsatzgrenzen des verwendeten Clamp-Klemmbügels und der verwendeten Dichtung sind zu beachten, da sie unter 40 bar (580 psi) liegen können. Der Klemmbügel und die Dichtung sind nicht im Lieferumfang enthalten.

Prozessanschluss 4-VCO-4, NPT 1/4", G 1/4"



■ 30 Mit Flanschwerkstoff: 1.4404 (316/316L)

■ 31 Mit Flanschwerkstoff: Alloy C22, 2.4602 (UNS N06022)

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB

■ 32 Mit Flanschwerkstoff: Alloy C22, 2.4602 (UNS N06022)

Gehäuse Messaufnehmer

Das Gehäuse des Messaufnehmers ist mit trockenem Stickstoff gefüllt und schützt die innenliegende Elektronik und Mechanik.

Wenn ein Messrohr ausfällt (z.B. aufgrund von Prozesseigenschaften wie korrosiven oder abrasiven Flüssigkeiten), wird die Flüssigkeit vom Messaufnehmergehäuse zunächst zurückgehalten.

Sollte es zu einem Ausfall eines Messrohrs kommen, steigt der Druck im Messaufnehmergehäuse entsprechend dem Betriebsdruck an. Wenn der Betreiber entscheidet, dass die Nenndruck-Werte/der Berstdruck des Messaufnehmergehäuses keine ausreichende Sicherheit bietet, kann das Messgerät mit einer Berstscheibe ausgestattet werden. Dadurch wird verhindert, dass sich im Inneren des Messaufnehmergehäuses ein zu hoher Druck aufbaut. Die Verwendung einer Berstscheibe wird daher in Anwendungen mit hohen Gasdrücken dringend empfohlen und insbesondere in

56

Anwendungen, in denen der Prozessdruck höher ist als 2/3 des Berstdrucks des Messaufnehmergehäuses.

i

Hochdruckgeräte sind immer mit einer Berstscheibe ausgestattet: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB

Nenndruck-Wert und Berstdruck des Messaufnehmergehäuses

Wenn das Messgerät mit einer Berstscheibe ausgestattet ist (Bestellmerkmal "Sensoroption", Option CA "Berstscheibe"), dann ist der Auslösedruck der Berstscheibe für den maximalen Nenndruck entscheidend .

Der Berstdruck des Messaufnehmergehäuses bezieht sich auf einen typischen Innendruck, der vor einem mechanischen Ausfall des Messaufnehmergehäuses erreicht wird und während der Typprüfung bestimmt wurde. Die entsprechende Erklärung zur Typprüfung kann zusammen mit dem Messgerät bestellt werden (Bestellmerkmal "Weitere Zulassung", Option LN "Berstdruck Sensorgehäuse, Typenprüfung").

DN		häi	ssaufnehmerge- use : einem Sicher- ctor ≥ 4)	Berstdruck Messaufnehmergehäuse			
[mm]	[in]	[bar]	[psi]	[bar]	[psi]		
1	1/24	25	362	100	1450		
2	1/12	25	362	100	1450		
4	1/8	25	362	100	1450		

Angaben zu den Abmessungen: Kapitel "Konstruktiver Aufbau"

Berstscheibe

Um die Sicherheit zu erhöhen, kann eine Geräteausführung mit Berstscheibe mit einem Auslösedruck von 10 ... 15 bar (145 ... 217,5 psi) verwendet werden (Bestellmerkmal "Sensoroption", Option CA "Berstscheibe").

Hochdruckgeräte sind immer mit einer Berstscheibe ausgestattet: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB

Durchflussgrenze

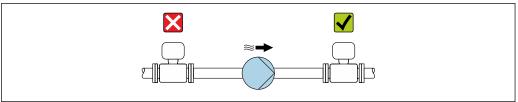
Die geeignete Nennweite wird ermittelt, indem zwischen dem Durchfluss und dem zulässigen Druckabfall optimiert wird.

Zur Übersicht der Messbereich-Endwerte: Kapitel "Messbereich" → 🖺 10

- Der minimal empfohlene Endwert beträgt ca. 1/20 des maximalen Endwerts
- Für die häufigsten Anwendungen sind 20 ... 50 % des maximalen Endwerts als ideal anzusehen
- Bei abrasiven Medien (z.B. feststoffbeladenen Flüssigkeiten) ist ein tiefer Endwert zu wählen: Strömungsgeschwindigkeit < 1 m/s (< 3 ft/s).
- Bei Gasmessungen gilt:
 - Die Strömungsgeschwindigkeit in den Messrohren sollte die halbe Schallgeschwindigkeit (0,5 Mach) nicht überschreiten
 - Der maximale Massefluss ist abhängig von der Dichte des Gases: Formel $\rightarrow~ riangleq 10$

Zur Berechnung der Durchflussgrenze: Produktauswahlhilfe Applicator → 🖺 103

Druckverlust



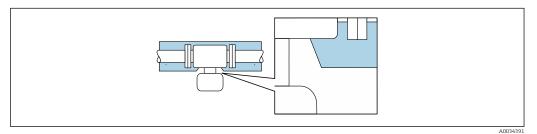
Systemdruck

Es ist wichtig, dass keine Kavitation und kein Ausgasen der in Flüssigkeiten enthaltenen Gase auftritt. Dies wird durch einen genügend hohen Systemdruck verhindert.

Deshalb werden folgende Montageorte empfohlen:

- Am tiefsten Punkt einer Steigleitung
- Auf der Druckseite von Pumpen (keine Unterdruckgefahr)

A002877

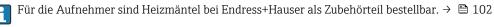

Wärmeisolation

Bei einigen Messstoffen ist es wichtig, dass die Abstrahlungswärme vom Messaufnehmer zum Messumformer gering gehalten wird. Für die erforderliche Isolation sind verschiedenste Materialien verwendbar.

HINWEIS

Überhitzung der Messelektronik durch Wärmeisolierung!

- ▶ Empfohlene Einbaulage: Horizontale Einbaulage, Messumformergehäuses nach unten gerichtet.
- ▶ Das Messumformergehäuse nicht mit isolieren.
- ▶ Maximal zulässige Temperatur am unteren Ende des Messumformergehäuses: 80 °C (176 °F)
- ▶ Wärmeisolation mit freiem Halsrohr: Wir empfehlen das Halsrohr nicht zu isolieren, um eine optimale Wärmeabfuhr zu gewährleisten.


■ 33 Wärmeisolation mit freiem Halsrohr

Beheizung

Bei einigen Messstoffen muss darauf geachtet werden, dass im Bereich des Messaufnehmers kein Wärmeverlust stattfindet.

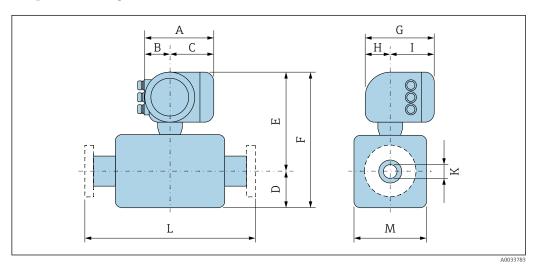
Beheizungsmöglichkeiten

- Elektrisch, z.B. mit Heizbändern
- Über heißwasser- oder dampfführende Rohre
- Über Heizmäntel

HINWEIS

Gefahr der Überhitzung bei Beheizung

- ► Sicherstellen, dass die Temperatur am unteren Ende des Messumformergehäuses nicht höher ist als 80 °C (176 °F).
- ▶ Gewährleisten, dass am Messumformerhals eine genügend grosse Konvektion vorhanden ist.
- Sicherstellen, dass eine genügend große Oberfläche der Messumformerhals frei bleibt. Der nicht abgedeckte Teil dient der Wärmeabfuhr und schützt die Messelektronik vor Überhitzung und Unterkühlung.
- Bei Einsatz im explosionsgefährdeten Bereich: Hinweise in der gerätespezifischen Ex- Dokumentation beachten. Detaillierte Angaben zu den Temperaturtabellen: Separates Dokument "Sicherheitshinweise" (XA) zum Gerät.


Vibrationen

Anlagenvibrationen haben aufgrund hoher Messrohr-Schwingfrequenz keinen Einfluss auf die Funktionstüchtigkeit des Messsystems.

Konstruktiver Aufbau

Abmessungen in SI-Einheiten

Kompaktausführung

Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"

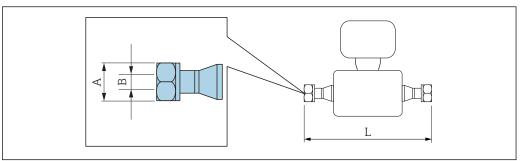
DN	A 1)	B 1)	С	D	Е	F	G ²⁾	Н	I 2)	K	L	M
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]							
1	169	68	101	54	269	323	200	59	141	1,1	3)	34
2	169	68	101	74	291	365	200	59	141	2,5	3)	48
4	169	68	101	90	306	396	200	59	141	3,9	3)	51

- 1) Je nach verwendeter Kabelverschraubung: Werte bis + 30 mm
- 2) Bei Version ohne Vor-Ort-Anzeige: Werte 30 mm
- 3) Abhängig vom jeweiligen Prozessanschluss

Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"; Ex d

DN	A 1)	В	С	D	Е	F	G ²⁾	Н	I 2)	К	L	М
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]							
1	188	85	103	54	271	325	217	58	148	1,1	3)	34
2	188	85	103	74	293	367	217	58	148	2,5	3)	48
4	188	85	103	90	308	398	217	58	148	3,9	3)	51

- 1) Je nach verwendeter Kabelverschraubung: Werte bis + 30 mm
- 2) Bei Version ohne Vor-Ort-Anzeige: Werte 49 mm
- 3) Abhängig vom jeweiligen Prozessanschluss


Bestellmerkmal "Gehäuse", Option B "Rostfrei, hygienisch"

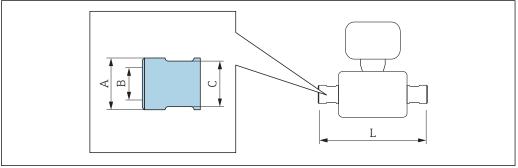
DN	A 1)	В	С	D	E	F	G ²⁾	Н	I 2)	К	L	М
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]							
1	183	73	110	54	267	321	207	65	142	1,1	3)	34
2	183	73	110	74	289	363	207	65	142	2,5	3)	48
4	183	73	110	90	304	394	207	65	142	3,9	3)	51

- 1) Je nach verwendeter Kabelverschraubung: Werte bis + 30 mm
- 2) Bei Version ohne Vor-Ort-Anzeige: Werte 13 mm
- 3) Abhängig vom jeweiligen Prozessanschluss

Verschraubungen

VCO-Anschluss

A0015624


Längentoleranz Maß L in mm: +1,5 / -2,0

4-VCO-4

Bestellmerkmal "Prozessanschluss", Option HAW

1.4435 (316/316L): Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SA Alloy C22: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HA Alloy C22, hochdruck: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB

DN [mm]	A [in]	B [mm]		L [mm]
		Option BB, BF, HA, SA	Option HB	
1	SW 11/ ₁₆	1,1	1	187
2	SW ¹¹ / ₁₆	2,5	2,1	264
4	SW 11/ ₁₆	3,9	3,2	310

Bestellmerkmal "Prozessanschluss", Option G06

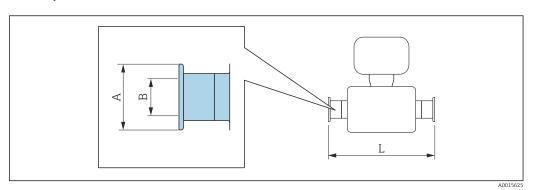
1.4404 (316L): Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option SA

Alloy C22: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HA

Alloy C22, hochdruck: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB

DN [mm]	A [mm]		B [in]	C [mm]	L [mm]
	Option HA, SA	Option HB			
1	22,5	25	G 1/4"	SW 21	257
2	22,5	25	G 1/4 "	SW 21	334
4	22,5 25		G 1/4"	SW 21	380

NPT 1/4 "


Bestellmerkmal "Prozessanschluss", Option P06

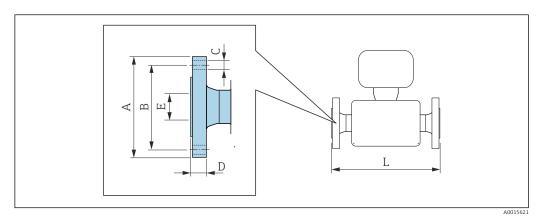
1.4404 (316L): Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option SA Alloy C22: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HA Alloy C22, hochdruck: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB

DN [mm]	A [mm]		B [in]	C [mm]	L [mm]	
	Option HA, SA Option HE					
1	22,5	25	NPT 1/4 "	SW 19	257	
2	22,5	25	NPT 1/4 "	SW 19	334	
4	22,5	25	NPT 1/4 "	SW 19	380	

Klemmverbindungen

Tri-Clamp

Längentoleranz Maß L in mm: +1.5 / -2.0


½" -Tri-Clamp Bestellmerkmal "Prozessanschluss", Option FBW 1.4435 (316L): Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SA							
DN [mm]	A [mm]	B [mm]	L [mm]				
1	25	9,5	193				
2	25	9,5	270				
4	25	9,5	316				

3-A-Ausführung (Ra \leq 0,76 µm/30 µin, Ra \leq 0,38 µm/15 µin) lieferbar: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF in Kombination mit Bestellmerkman BB, BF in Kombination mit BB, BF in K mal "Weitere Zulassung" , Option LP $\,$

62

Flanschanschlüsse

Festflansch EN 1092-1, ASME B16.5, JIS B2220

Län

Längentoleranz Maß L in mm: +1.5 / -2.0

Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N), PN 40 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option D2S Alloy C22: Bestellmerkmal "Prozessanschluss", Option D2C

Flansch mit Nut in Anlehnung an EN 1092-1 Form D (DIN 2512N), PN 40 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option D6S Alloy C22: Bestellmerkmal "Prozessanschluss", Option D6C

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
1	95	65	4 × Ø14	16	17,3	262
2	95	65	4 × Ø14	16	17,3	339
4	95	65	4 × Ø14	16	17,3	385

Oberflächenrauhigkeit (Flansch): EN 1092-1 Form B1 (DIN 2526 Form C), Ra 3,2 ... 12,5 µm

Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N), PN 100 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option D4S Alloy C22: Bestellmerkmal "Prozessanschluss", Option D4C

Flansch mit Nut in Anlehnung an EN 1092-1 Form D (DIN 2512N), PN 100 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option D8S Alloy C22: Bestellmerkmal "Prozessanschluss", Option D8C

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
1	105	75	4 × Ø14	20	17,3	292
2	105	75	4 × Ø14	20	17,3	369
4	105	75	4 × Ø14	20	17,3	415
Oberflächenra	uhigkeit (Flanscl	n): EN 1092-1 F	orm B1 (DIN 2526	Form C), Ra 3,2	2 12,5 μm	

Flansch in Anlehnung an EN 1092-1 (DIN 2501 / DIN 2512N), PN 400 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option DNS

Alloy C22: Bestellmerkmal "Prozessanschluss", Option DNC

Flansch mit Nut in Anlehnung an EN 1092-1 Form D (DIN 2512N), PN 400 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option DPS Alloy C22: Bestellmerkmal "Prozessanschluss", Option DPC

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
1	145	100	4 × Ø22	30	17,3	336
2	145	100	4 × Ø22	30	17,3	413
4	145	100	4 × Ø22	30	17,3	459

Oberflächenrauhigkeit (Flansch): EN 1092-1 Form B1 (DIN 2526 Form C), Ra 3,2 ... 12,5 µm

Flansch in Anlehnung an ASME B16.5, Class 150 RF, Schedule 40 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option AAS Alloy C22: Bestellmerkmal "Prozessanschluss", Option AAC

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
1	90	60,3	4 × Ø15,9	11,6	15,7	262
2	90	60,3	4 × Ø15,9	11,6	15,7	339
4	90	60,3	4 × Ø15,9	11,6	15,7	385

Oberflächenrauhigkeit (Flansch): Ra 3,2 ... 6,3 µm

Flansch in Anlehnung an ASME B16.5, Class 300 RF, Schedule 40 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option ABS Alloy C22: Bestellmerkmal "Prozessanschluss", Option ABC

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]		
1	95	66,7	4 × Ø15,9	14,7	15,7	262		
2	95	66,7	4 × Ø15,9	14,7	15,7	339		
4	95	66,7	4 × Ø15,9	14,7	15,7	385		
			_					

Oberflächenrauhigkeit (Flansch): Ra 3,2 ... 6,3 µm

Flansch in Anlehnung an ASME B16.5, Class 600 RF, Schedule 80 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option ACS Alloy C22: Bestellmerkmal "Prozessanschluss", Option ACC

			,					
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]		
1	95	66,7	4 × Ø15,9	21,3	13,9	292		
2	95	66,7	4 × Ø15,9	21,3	13,9	369		
4	95	66,7	4 × Ø15,9	21,3	13,9	415		
Oberflächenrauhigkeit (Flansch): Ra 3,2 6,3 μm								

Endress+Hauser

Flansch in Anlehnung an ASME B16.5, Class 900/1500 RF, Schedule 80 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option ARS

Alloy C22: Bestellmerkmal "Prozessanschluss", Option ARC

Flansch in Anlehnung an ASME B16.5, Class 900/1500 RTJ, Schedule 80 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option ASS Alloy C22: Bestellmerkmal "Prozessanschluss", Option ASC

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]				
1	120	82,6	4 × Ø22 ¹⁾	29,3	14	324				
2	120	82,6	4 × Ø22 ¹⁾	29,3	14	401				
4	120	82,6	4 × Ø22 ¹⁾	29,3	14	447				
Oberflächenra	Oberflächenrauhigkeit (Flansch): Ra 3,2 6,3 µm									

1) Option ARC/ARS: 4 × Ø22,2

Flansch in Anlehnung an ASME B16.5, Class 2500 RF, Schedule 80 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option ATS Alloy C22: Bestellmerkmal "Prozessanschluss", Option ATC

Flansch in Anlehnung an ASME B16.5, Class 2500 RTJ, Schedule 80

1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option AUS Alloy C22: Bestellmerkmal "Prozessanschluss", Option AUC

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]
1	135	88,9	4 × Ø22,2	37,2	14	351
2	135	88,9	4 × Ø22,2	37,2	14	428
4	135	88,9	4 × Ø22,2	37,2	14	474

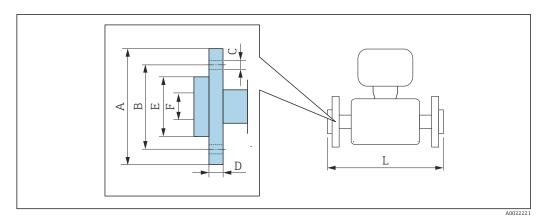
Oberflächenrauhigkeit (Flansch): Ra 3,2 ... 6,3 µm

Flansch JIS B2220, 20K
1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option NES
Alloy C22: Bestellmerkmal "Prozessanschluss", Option NEC

Alloy CZZ: Des	Anoy CZZ. Destenmerkinar Prozessanscrituss, Option NEC										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]					
1	95	70	4 × Ø15	14	15	262					
2	95	70	4 × Ø15	14	15	339					
4	95	70	4 × Ø15	14	15	385					

Oberflächenrauhigkeit (Flansch): Ra 3,2 ... 6,3 µm

Flansch JIS B2220, 40K


1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option NGS Alloy C22: Bestellmerkmal "Prozessanschluss", Option NGC

DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]					
1	115	80	4 × Ø19	20	15	292					
2	115	80	4 × Ø19	20	15	369					
4	115	80	4 × Ø19	20	15	415					
Oberflächenra	uhigkeit (Flansc	Dberflächenrauhigkeit (Flansch): Ra 3,2 6,3 μm									

65

1.4404 (F316	Flansch JIS B2220, 63K 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option NHS Alloy C22: Bestellmerkmal "Prozessanschluss", Option NHC									
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	L [mm]				
1	120	85	4 × Ø19	23	12	312				
2	120	85	4 × Ø19	23	12	389				
4	120	85	4 × Ø19	23	12	435				
Oberflächenra	Oberflächenrauhigkeit (Flansch): Ra 3,2 6,3 µm									

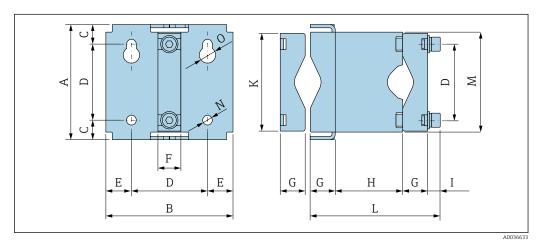
Losflansch EN 1092-1, ASME B16.5, JIS B2220

Längentoleranz Maß L in mm: +1,5 / -2,0

	Losflansch in Anlehnung an EN 1092-1 Form D: PN 40 1.4301 (F304), mediumsberührende Teile Alloy C22: Bestellmerkmal "Prozessanschluss", Option DAC										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	L [mm]				
1	95	65	4 × Ø14	14,5	45	17,3	262				
2	95	65	4 × Ø14	14,5	45	17,3	339				
4	95	65	4 × Ø14	14,5	45	17,3	385				
Oberflächen	rauhigkeit (Fl	lansch): Ra 3,	2 12,5 μm								

	Losflansch in Anlehnung an ASME B16.5: Class 150, Schedule 40 1.4301 (F304), mediumsberührende Teile Alloy C22: Bestellmerkmal "Prozessanschluss", Option ADC										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	L [mm]				
1	90	60,3	4 × Ø15,9	15	35,1	15,7	262				
2	90	60,3	4 × Ø15,9	15	35,1	15,7	339				
4	90	60,3	4 × Ø15,9	15	35,1	15,7	385				
Oberflächen	rauhigkeit (Fl	ansch): Ra 3,	2 12,5 μm								

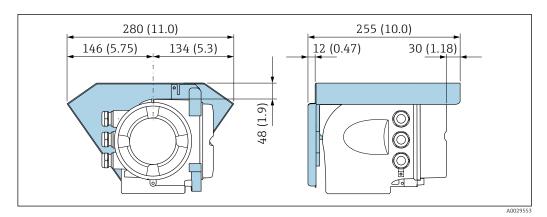
	Losflansch in Anlehnung an ASME B16.5: Class 300, Schedule 40 1.4301 (F304), mediumsberührende Teile Alloy C22: Bestellmerkmal "Prozessanschluss", Option AEC															
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	L [mm]	L _{diff} 1) [mm]								
1	95	66,7	4 × Ø15,9	16,5	35,1	15,7	268	+6								
2	95	66,7	4 × Ø15,9	16,5	35,1	15,7	245	+6								
4	95	66,7	4 × Ø15,9	16,5	35,1	15,7	391	+6								
Oberfläche	nrauhigkeit	(Flansch): F	Ra 3,2 12,5 μm				Dberflächenrauhigkeit (Flansch): Ra 3,2 12,5 μm									

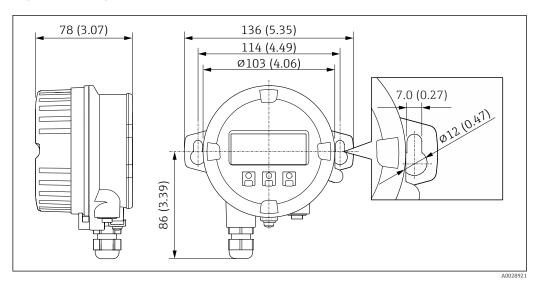

1) Differenz zur Einbaulänge des Vorschweißflansches (Bestellmerkmal "Prozessanschluss", Option AAC)

	Losflansch in Anlehnung an ASME B16.5: Class 600, Schedule 80 1.4301 (F304), mediumsberührende Teile Alloy C22: Bestellmerkmal "Prozessanschluss", Option AFC										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	L [mm]				
1	95	66,7	4 × Ø15,9	17	35,1	13,9	292				
2	95	66,7	4 × Ø15,9	17	35,1	13,9	369				
4	95	66,7	4 × Ø15,9	17	35,1	13,9	415				
Oberflächen	Oberflächenrauhigkeit (Flansch): Ra 3,2 12,5 µm										

_	Losflansch JIS B2220: 20K 1.4301 (F304), mediumsberührende Teile Alloy C22: Bestellmerkmal "Prozessanschluss", Option NIC										
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	L [mm]				
1	95	70	4 × Ø15	14	51	15	262				
2	95	70	4 × Ø15	14	51	15	339				
4	95	70	4 × Ø15	14	51	15	385				
Oberflächenn	auhigkeit (Fla	nsch): Ra 3,2	12,5 µm	•							

Zubehör

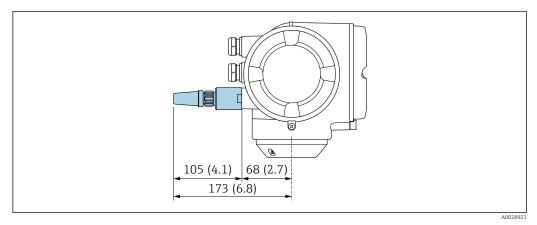

Sensorhalterung


A	B	C	D	E	F	G
[mm]						
106	117	18	70	23,5	21	23

H	I	K	L	M	N	0
[mm]						
62	12	90	120	92	9	15

Wetterschutzhaube

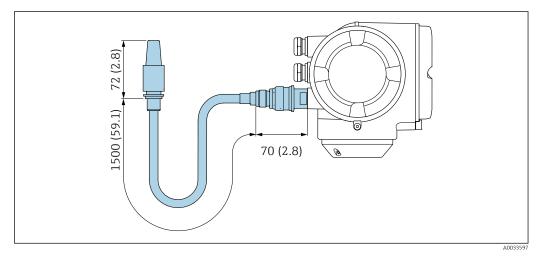
Abgesetztes Anzeige- und Bedienmodul DKX001



🛮 34 Maßeinheit mm (in)

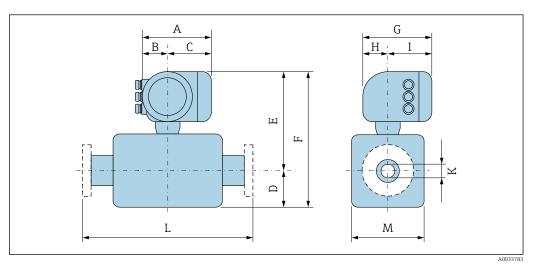
Externe WLAN-Antenne

Die externe WLAN-Antenne ist nicht für den Einsatz in hygienischen Anwendungen geeignet.


Externe WLAN-Antenne am Gerät montiert

🗗 35 Maßeinheit mm (in)

Externe WLAN-Antenne mit Kabel montiert


Bei schlechten Sende-/Empfangsbedingungen am Montageort des Messumformers kann die externe WLAN-Antenne getrennt vom Messumformer montiert werden.

₩ 36 Maßeinheit mm (in)

Abmessungen in US-Einheiten

Kompaktausführung

Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"

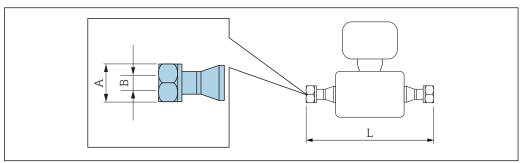
DN	A 1)	B 1)	С	D	Е	F	G ²⁾	Н	I 2)	К	L	М
[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]
1/24	6,65	2,68	3,98	2,13	10,59	12,72	7,87	2,32	5,55	0,04	3)	1,34
1/12	6,65	2,68	3,98	2,91	11,46	14,37	7,87	2,32	5,55	0,10	3)	1,89
1/8	6,65	2,68	3,98	3,54	12,05	15,59	7,87	2,32	5,55	0,15	3)	2,01

- Je nach verwendeter Kabelverschraubung: Werte bis + 1,18 in 1)
- Bei Version ohne Vor-Ort-Anzeige: Werte 1,18 in
- 2) 3) Abhängig vom jeweiligen Prozessanschluss

Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"; Ex d

DN	A 1)	В	С	D	E	F	G ²⁾	Н	I 2)	К	L	М
[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]
1/24	7,40	3,35	4,06	2,13	10,67	12,8	8,54	2,28	5,83	0,04	3)	1,34
1/12	7,40	3,35	4,06	2,91	11,54	14,45	8,54	2,28	5,83	0,10	3)	1,89
1/8	7,40	3,35	4,06	3,54	12,13	15,67	8,54	2,28	5,83	0,15	3)	2,01

- Je nach verwendeter Kabelverschraubung: Werte bis + 1,18 in 1)
- 2) 3) Bei Version ohne Vor-Ort-Anzeige: Werte - 1,93 in Abhängig vom jeweiligen Prozessanschluss


Bestellmerkmal "Gehäuse", Option B "Rostfrei, hygienisch"

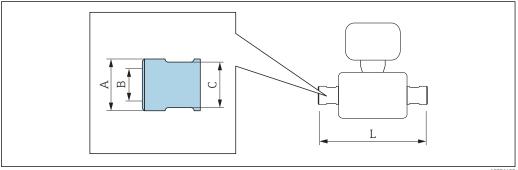
DN	A 1)	В	С	D	E	F	G ²⁾	Н	I 2)	К	L	М
[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]	[in]
1/24	7,20	2,87	4,33	2,13	10,51	12,64	8,15	2,56	5,59	0,04	3)	1,34
1/12	7,20	2,87	4,33	2,91	11,38	14,29	8,15	2,56	5,59	0,10	3)	1,89
1/8	7,20	2,87	4,33	3,54	11,97	15,51	8,15	2,56	5,59	0,15	3)	2,01

- Je nach verwendeter Kabelverschraubung: Werte bis + 1,18 in
- Bei Version ohne Vor-Ort-Anzeige: Werte 0,51 in 2)
- 3) Abhängig vom jeweiligen Prozessanschluss

Verschraubungen

VCO-Anschluss

Längentoleranz Maß L in inch: +0,06 / -0,08


4-VCO-4

Bestellmerkmal "Prozessanschluss", Option HAW

1.4435 (316/316L): Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SA Alloy C22: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HA

Alloy C22, hochdruck: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB

DN [in]	A [in]	B [in]		L [in]
		Option BB, BF, HA, SA	Option HB	
1/24	SW 11/ ₁₆	0,04	0,04	7,36
1/12	SW ¹¹ / ₁₆	0,1	0,08	10,39
1/8	SW ¹¹ / ₁₆	0,15	0,13	12,2

Bestellmerkmal "Prozessanschluss", Option G06

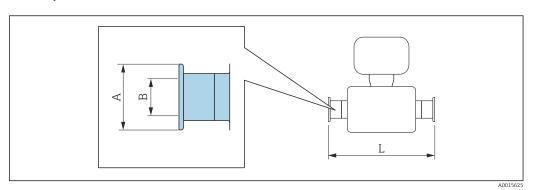
1.4404 (316L): Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option SA

Alloy C22: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HA

Alloy C22, hochdruck: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB

DN [in]	A [ii		B [in]	C [in]	L [in]
	Option HA, SA	Option HB			
1/24	0,89	0,98	G 1/4"	AF ¹³ / ₁₆ "	10,12
1/12	0,89	0,98	G 1/4"	AF ¹³ / ₁₆ "	13,15
1/8	0,89	0,98	G 1/4"	AF ¹³ / ₁₆ "	14,96

NPT 1/4 "

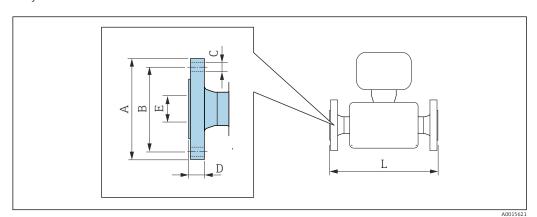

Bestellmerkmal "Prozessanschluss", Option P06

1.4404 (316L): Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option SA Alloy C22: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HA Alloy C22, hochdruck: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB

DN [in]	A [in]		B [in]	C [in]	L [in]
	Option HA, SA	Option HB			
1/24	0,89	0,98	NPT 1/4 "	AF ³ / ₄ "	10,12
1/12	0,89	0,98	NPT 1/4 "	AF ³ / ₄ "	13,15
1/8	0,89	0,98	NPT 1/4 "	AF ³ / ₄ "	14,96

Klemmverbindungen

Tri-Clamp


Längentoleranz Maß L in inch: +0,06 / -0,08

½" -Tri-Clamp Bestellmerkmal "Prozessanschluss", Option FBW 1.4435 (316L): Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SA					
DN [in]	A [in]	B [in]	L [in]		
1/24	0,98	0,37	7,6		
1/12	0,98	0,37	10,63		
1/8	0,98	0,37	12,44		

3-A-Ausführung (Ra \leq 0,76 µm/30 µin, Ra \leq 0,38 µm/15 µin) lieferbar: Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF in Kombination mit Bestellmerkmal "Weitere Zulassung", Option LP

Flanschanschlüsse

Festflansch ASME B16.5

Längentoleranz Maß L in inch: +0,06 / -0,08

Flansch in Anlehnung an ASME B16.5, Class 150 RF, Schedule 40 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option AAS Alloy C22: Bestellmerkmal "Prozessanschluss", Option AAC DN В D Е L [in] [in] [in] [in] [in] [in] [in] 1/24 3,54 2,37 $4 \times \emptyset0,63$ 0,46 0,62 10,31 1/12 3,54 2,37 4 × Ø0,63 0,46 0,62 13,35 1/8 3,54 2,37 4 × Ø0,63 0,46 0,62 15,16 Oberflächenrauhigkeit (Flansch): Ra 3,2 ... 6,3 μm

Flansch in Anlehnung an ASME B16.5, Class 300 RF, Schedule 40 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option ABS Alloy C22: Bestellmerkmal "Prozessanschluss", Option ABC							
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]	
1/24	3,74	2,63	4 × Ø0,63	0,58	0,62	10,31	
1/12	3,74	2,63	4 × Ø0,63	0,58	0,62	13,35	
1/8 3,74 2,63 4 × Ø0,63 0,58 0,62 15,16							
Oberflächenr	auhigkeit (Flar	nsch): Ra 3,2	6,3 µm				

Flansch in Anlehnung an ASME B16.5, Class 600 RF, Schedule 80 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option ACS Alloy C22: Bestellmerkmal "Prozessanschluss", Option ACC							
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]	
1/24	3,74	2,63	4 × Ø0,63	0,84	0,55	11,5	
1/12	3,74	2,63	4 × Ø0,63	0,84	0,55	14,53	
¹⁄ ₈ 3,74 2,63 4 × Ø0,63 0,84 0,55 16,34							
Oberflächenr	auhigkeit (Flar	nsch): Ra 3,2	6,3 µm				

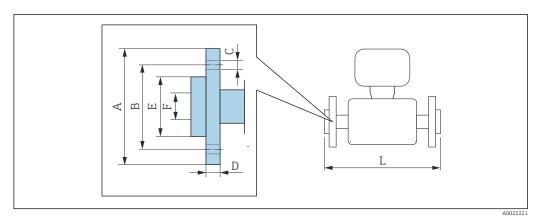
Flansch in Anlehnung an ASME B16.5, Class 900/1500 RF, Schedule 80 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option ARS

Alloy C22: Bestellmerkmal "Prozessanschluss", Option ARC

Flansch in Anlehnung an ASME B16.5, Class 900/1500 RTJ, Schedule 80 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option ASS Alloy C22: Bestellmerkmal "Prozessanschluss", Option ASC

DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]
1/24	4,72	3,25	4 × Ø0,87	1,15	0,55	12,76
1/12	4,72	3,25	4 × Ø0,87	1,15	0,55	15,79
1/8	4,72	3,25	4 × Ø0,87	1,15	0,55	17,6

Oberflächenrauhigkeit (Flansch): Ra 3,2 ... 6,3 μm


Flansch in Anlehnung an ASME B16.5, Class 2500 RF, Schedule 80 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option ATS Alloy C22: Bestellmerkmal "Prozessanschluss", Option ATC

Flansch in Anlehnung an ASME B16.5, Class 2500 RTJ, Schedule 80 1.4404 (F316/F316L): Bestellmerkmal "Prozessanschluss", Option AUS Alloy C22: Bestellmerkmal "Prozessanschluss", Option AUC

DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	L [in]
1/24	5,31	3,5	4 × Ø0,87	1,46	0,55	13,82
1/12	5,31	3,5	4 × Ø0,87	1,46	0,55	16,85
1/8	5,31	3,5	4 × Ø0,87	1,46	0,55	18,66

Oberflächenrauhigkeit (Flansch): Ra 3,2 ... 6,3 μm

Losflansch ASME B16.5

Längentoleranz Maß L in mm: +1,5 / -2,0

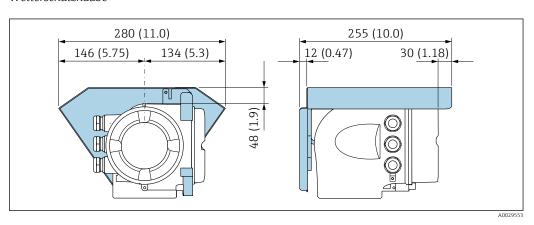
	Losflansch in Anlehnung an ASME B16.5: Class 150, Schedule 40 1.4301 (F304), mediumsberührende Teile Alloy C22: Bestellmerkmal "Prozessanschluss", Option ADC							
DN A B C D E F L [in] [in] [in] [in] [in] [in]					L [in]			
1/24	3,54	2,37	4 × Ø0,63	0,59	1,65	0,62	10,31	
1/12 3,54 2,37 4 × Ø0,63 0,59 1,65 0,62 13,35						13,35		
1/8 3,54 2,37 4 × Ø0,63 0,59 1,65 0,62 15,16								
Oberflächen	Oberflächenrauhigkeit (Flansch): Ra 3,2 12.5 µm							

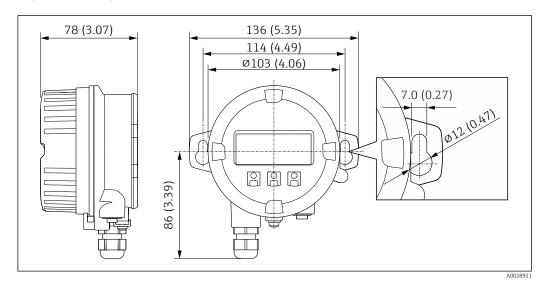
	Losflansch in Anlehnung an ASME B16.5: Class 300, Schedule 40 1.4301 (F304), mediumsberührende Teile Alloy C22: Bestellmerkmal "Prozessanschluss", Option AEC							
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	F [in]	L [in]	L _{diff} ¹⁾ [in]
1/24	3,74	2,63	4 × Ø0,63	0,65	1,77	0,62	10,55	0,24
1/12	3,74	2,63	4 × Ø0,63	0,65	1,77	0,62	9,65	0,24
1/8	3,74	2,63	4 × Ø0,63	0,65	1,77	0,62	15,39	0,24
Oberfläche	Oberflächenrauhigkeit (Flansch): Ra 3,2 12,5 µm							

1) Differenz zur Einbaulänge des Vorschweißflansches (Bestellmerkmal "Prozessanschluss", Option AAC)

Losflansch in Anlehnung an ASME B16.5: Class 600, Schedule 80 1.4301 (F304), mediumsberührende Teile Alloy C22: Bestellmerkmal "Prozessanschluss", Option AFC							
DN [in]						L [in]	
1/24	3,74	2,63	4 × Ø15,9	0,67	1,89	0,55	11,5
1/12	3,74	2,63	4 × Ø15,9	0,67	1,89	0,55	14,53
1/8 3,74 2,63 4 × Ø15,9 0,67 1,89 0,55 16,34							
Oberflächen	Oberflächenrauhigkeit (Flansch): Ra 3,2 12,5 μm						

Zubehör

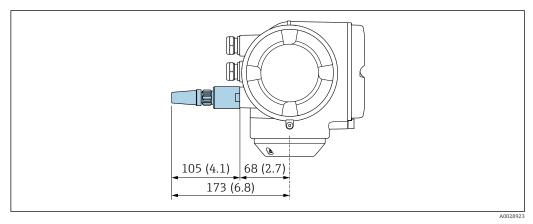

Sensorhalterung


A	B	C	D	E	F	G
[in]						
4.17	4.6	0.7	2.4	0.9	0.83	

H	I	K	L	M	N	0
[in]						
2.4	0.5	3.54	4.7	3.6	0.35	

Wetters chutzhaube

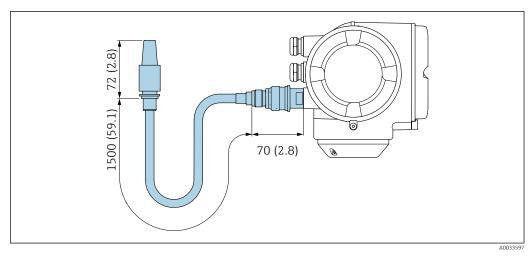
Abgesetztes Anzeige- und Bedienmodul DKX001



🖸 37 Maßeinheit mm (in)

Externe WLAN-Antenne

pie externe WLAN-Antenne ist nicht für den Einsatz in hygienischen Anwendungen geeignet.


Externe WLAN-Antenne am Gerät montiert

🖪 38 Maßeinheit mm (in)

Externe WLAN-Antenne mit Kabel montiert

Bei schlechten Sende-/Empfangsbedingungen am Montageort des Messumformers kann die externe WLAN-Antenne getrennt vom Messumformer montiert werden.

■ 39 Maßeinheit mm (in)

Gewicht

Alle Werte (Gewicht ohne Verpackungsmaterial) beziehen sich auf Geräte mit VCO-Anschlüssen. Gewichtsangaben inklusive Messumformer gemäß Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet".

Abweichende Werte aufgrund anderer Messumformerausführungen:

- Messumformerausführung für den Ex-Bereich (Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"; Ex d): +2 kg (+4,4 lbs)
- Messumformerausführung für den hygienischen Bereich (Bestellmerkmal "Gehäuse", Option B "Rostfrei, hygienisch"): +0,2 kg (+0,44 lbs)

Gewicht in SI-Einheiten

DN [mm]	Gewicht [kg]
1	5,35
2	6,9
4	8,75

Gewicht in US-Einheiten

DN [in]	Gewicht [lbs]
1/24	12
1/12	15
1/8	19

Werkstoffe

Gehäuse Messumformer

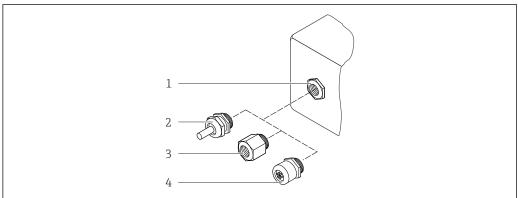
Bestellmerkmal "Gehäuse":

- \blacksquare Option A "Alu, beschichtet": Aluminium, AlSi10Mg, beschichtet
- Option **B** "Rostfrei, hygienisch": Rostfreier Stahl, 1.4404 (316L)

Fensterwerkstoff

Bestellmerkmal "Gehäuse":

- Option **A** "Alu, beschichtet": Glas
- Option **B** "Rostfrei, hygienisch": Polycarbonat


Dichtungen

Bestellmerkmal "Gehäuse":

Option ${\bf B}$ "Rostfrei, hygienisch": EPDM und Silikon

80

Kabeleinführungen/-verschraubungen

A002835

🛮 40 🏻 Mögliche Kabeleinführungen/-verschraubungen

- I Innengewinde $M20 \times 1,5$
- 2 Kabelverschraubung $M20 \times 1,5$
- 3 Adapter für Kabeleinführung mit Innengewinde G ½" oder NPT ½"
- 4 Gerätestecker

Bestellmerkmal "Gehäuse", Option A "Alu, beschichtet"

Die verschiedenen Kabeleinführungen sind für den explosionsgefährdeten und nicht explosionsgefährdeten Bereich geeignet.

Kabeleinführung/-verschraubung	Werkstoff
Kabelverschraubung M20 × 1,5	Kunststoff/Messing vernickelt
Adapter für Kabeleinführung mit Innengewinde G 1/2"	Messing vernickelt
Adapter für Kabeleinführung mit Innengewinde NPT 1/2"	

Bestellmerkmal "Gehäuse", Option B "Rostfrei, hygienisch"

Die verschiedenen Kabeleinführungen sind für den explosionsgefährdeten und nicht explosionsgefährdeten Bereich geeignet.

Kabeleinführung/-verschraubung	Werkstoff
Kabelverschraubung M20 × 1,5	Kunststoff
Adapter für Kabeleinführung mit Innengewinde G 1/2"	Messing vernickelt
Adapter für Kabeleinführung mit Innengewinde NPT 1/2"	

Gerätestecker

Elektrischer Anschluss	Werkstoff
Stecker M12x1	 Buchse: Rostfreier Stahl, 1.4404 (316L) Kontaktträger: Polyamid Kontakte: Messing vergoldet

Gehäuse Messaufnehmer

- Säuren- und laugenbeständige Außenoberfläche
- Rostfreier Stahl, 1.4404 (316L)

Messrohre

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF, SA Rostfreier Stahl, 1.4435 (316/316L)

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HA, HB Alloy C22, 2.4602 (UNS N06022)

Prozessanschlüsse

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option SA

VCO Anschluss	Rostfreier Stahl, 1.4404 (316/316L)
G¼" Innengewinde	Rostfreier Stahl, 1.4404 (316/316L)
NPT1/4" Innengewinde	Rostfreier Stahl, 1.4404 (316/316L)
Tri-Clamp½"	Rostfreier Stahl, 1.4435 (316L)
Festflansch EN 1092-1, ASME B16.5, JIS B2220	Rostfreier Stahl, 1.4404 (316/316L)

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option BB, BF

Tri-Clamp½"	Rostfreier Stahl, 1.4435 (316L)	
-------------	---------------------------------	--

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HA

VCO Anschluss	Alloy C22, 2.4602 (UNS N06022)
G¼" Innengewinde	Alloy C22, 2.4602 (UNS N06022)
NPT¼" Innengewinde	Alloy C22, 2.4602 (UNS N06022)
Festflansch EN 1092-1, ASME B16.5, JIS B2220	Alloy C22, 2.4602 (UNS N06022)
Losflansch EN 1092-1, ASME B16.5, JIS B2220	Rostfreier Stahl, 1.4301 (F304), mediumsberührende Teile Alloy C22, 2.4602 (UNS N06022)

Bestellmerkmal "Messrohr Mat., Oberfläche mediumberührt", Option HB (Option Hochdruck)

VCO Anschluss	Alloy C22, 2.4602 (UNS N06022)
G¼" Innengewinde	Alloy C22, 2.4602 (UNS N06022)
NPT¼" Innengewinde	Alloy C22, 2.4602 (UNS N06022)
Festflansch EN 1092-1, ASME B16.5, JIS B2220	Rostfreier Stahl, 1.4404 (316/316L); Alloy C22, 2.4602 (UNS N06022)

Verfügbare Prozessanschlüsse→ 🖺 83

Dichtungen

Geschweißte Prozessanschlüsse ohne innenliegende Dichtungen

Zubehör

Sensorhalterung

Rostfreier Stahl, 1.4404 (316L)

Heizmantel

- Heizmantelgehäuse: Rostfreier Stahl, 1.4571 (316Ti)
- NPT-Adapter ½": Rostfreier Stahl, 1.4404 (316)
- G½" -Adapter: Rostfreier Stahl, 1.4404

Wetterschutzhaube

Rostfreier Stahl, 1.4404 (316L)

Externe WLAN-Antenne

- Antenne: Kunststoff ASA (acrylic ester-styrene-acrylonitrile) und Messing vernickelt
- Adapter: Rostfreier Stahl und Messing vernickelt
- Kabel: Polyethylen
- Stecker: Messing vernickelt
- Befestigungswinkel: Rostfreier Stahl

Prozessanschlüsse

- Festflanschanschlüsse:
 - EN 1092-1 (DIN 2501) Flansch
 - EN 1092-1 (DIN 2512N) Flansch
 - ASME B16.5 Flansch
 - JIS B2220 Flansch
- Klemmverbindungen:

Tri-Clamp (OD-Tubes), DIN 11866 Reihe C

- VCO-Anschlüssse:
 - 4-VCO-4
- Innengewinde:
 - Zylindrisches Innengewinde BSPP (G) nach ISO 228-1 mit Dichtflächen nach DIN 3852-2/ISO 1179-1
 - NPT

Werkstoffe der Prozessanschlüsse → 🖺 82

Oberflächenrauhigkeit

Alle Angaben beziehen sich auf messstoffberührende Teile. Die folgenden Oberflächenrauhigkeiten sind bestellbar.

- Nicht poliert
- $Ra_{max} = 0.76 \mu m$ (30 μ in) mechanisch poliert
- $Ra_{max} = 0.38 \mu m$ (15 μ in) mechanisch poliert

Bedienbarkeit

Bedienkonzept

Nutzerorientierte Menüstruktur für anwenderspezifische Aufgaben

- Inbetriebnahme
- Betrieb
- Diagnose
- Expertenebene

Schnelle und sichere Inbetriebnahme

- $\, \bullet \,$ Geführte Menüs ("Make-it-run"-Wizards) für Anwendungen
- Menüführung mit kurzen Erläuterungen der einzelnen Parameterfunktionen
- Zugriff auf das Gerät via Webserver oder SmartBlue App → 🖺 103
- WLAN-Zugriff auf das Gerät mittels mobilem Handbediengerät, Tablet oder Smartphone

Sicherheit im Betrieb

- Bedienung in Landessprache → 🖺 84
- Einheitliche Bedienphilosophie am Gerät und in den Bedientools
- Beim Austausch von Elektronikmodulen: Übernahme der Gerätekonfiguration durch den integrierten Datenspeicher (HistoROM Backup), der die Prozess-, Messgerätedaten und das Ereignis-Logbuch enthält. Keine Neuparametrierung nötig.

Effizientes Diagnoseverhalten erhöht die Verfügbarkeit der Messung

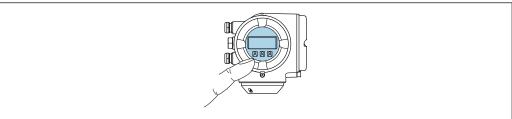
- Behebungsmaßnahmen sind via Gerät und in den Bedientools abrufbar
- Vielfältige Simulationsmöglichkeiten, Logbuch zu eingetretenen Ereignissen und optional Linienschreiberfunktionen

Sprachen

Bedienung in folgenden Landessprachen möglich:

- Via Vor-Ort-Bedienung
 Englisch, Deutsch, Französisch, Spanisch, Italienisch, Niederländisch, Portugiesisch, Polnisch, Russisch, Türkisch, Chinesisch, Japanisch, Koreanisch, Bahasa (Indonesisch), Vietnamesisch, Tschechisch. Schwedisch
- Via Webbrowser
 Englisch, Deutsch, Französisch, Spanisch, Italienisch, Niederländisch, Portugiesisch, Polnisch, Russisch, Türkisch, Chinesisch, Japanisch, Koreanisch, Bahasa (Indonesisch), Vietnamesisch, Tschechisch, Schwedisch
- Via Bedientool "FieldCare", "DeviceCare": Englisch, Deutsch, Französisch, Spanisch, Italienisch, Chinesisch, Japanisch

Vor-Ort-Bedienung


Via Anzeigemodul

Es stehen zwei Anzeigemodule zur Verfügung:

- Bestellmerkmal "Anzeige; Bedienung", Option F "4-zeilige, beleuchtete, grafische Anzeige; Touch Control"
- Bestellmerkmal "Anzeige; Bedienung", Option G "4-zeilige, beleuchtete, grafische Anzeige; Touch Control + WLAN"

Informationen zur WLAN-Schnittstelle $\rightarrow~\cong~91$

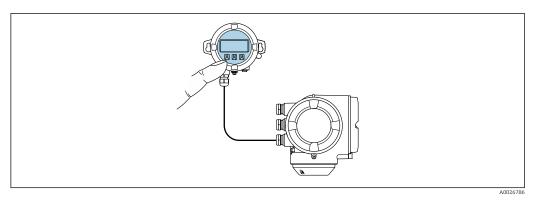
A002678

 $\blacksquare 41$ Bedienung mit Touch Control

Anzeigeelemente

- 4-zeilige, beleuchtete, grafische Anzeige
- Hintergrundbeleuchtung weiß, bei Gerätefehler rot
- Anzeige für die Darstellung von Messgrößen und Statusgrößen individuell konfigurierbar
- Zulässige Umgebungstemperatur für die Anzeige: −20 ... +60 °C (−4 ... +140 °F) Außerhalb des Temperaturbereichs kann die Ablesbarkeit der Anzeige beeinträchtigt sein.

Bedienelemente


- Bedienung von außen ohne Öffnen des Gehäuses via Touch Control (3 optische Tasten): 🕀 🖯 🖽
- Bedienelemente auch in den verschiedenen Zonen des explosionsgefährdeten Bereichs zugänglich

Via abgesetztem Anzeige- und Bedienmodul DKX001

| Das abgesetzte Anzeige- und Bedienmodul DKX001 ist optional bestellbar → 🖺 101.

- Das abgesetztes Anzeige- und Bedienmodul DKX001 ist nur für folgende Gehäuseausführung verfügbar: Bestellmerkmal "Gehäuse": Option A "Alu, beschichtet"
- Bei der direkten Bestellung des abgesetzten Anzeige- und Bedienmoduls DKX001 mit dem Messgerät, wird das Messgerät immer mit einem Blinddeckel ausgeliefert. Eine Anzeige oder Bedienung am Messumformer ist in dem Fall nicht vorhanden.
- Bei nachträglicher Bestellung darf das abgesetzte Anzeige- und Bedienmodul DKX001 nicht gleichzeitig mit dem vorhandenen Anzeigemodul des Messgeräts angeschlossen werden. Es darf immer nur eine Anzeige oder Bedienung am Messumformer angeschlossen sein.

🖻 42 🛮 Bedienung via abgesetztem Anzeige- und Bedienmodul DKX001

Anzeige- und Bedienelemente

Gehäusewerkstoff

Der Gehäusewerkstoff des Anzeige- und Bedienmoduls DKX001 ist abhängig von der Auswahl des Werkstoffs des Messumformergehäuses.

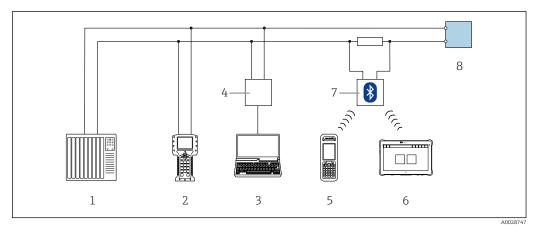
Messumformergehäuse		Abgesetztes Anzeige- und Bedienmodul	
Bestellmerkmal "Gehäuse"	Werkstoff	Werkstoff	
Option A "Alu, beschichtet"	AlSi10Mg, beschichtet	AlSi10Mg, beschichtet	

Kabeleinführung

Entspricht der Auswahl des Messumformergehäuses, Bestellmerkmal "Elektrischer Anschluss".

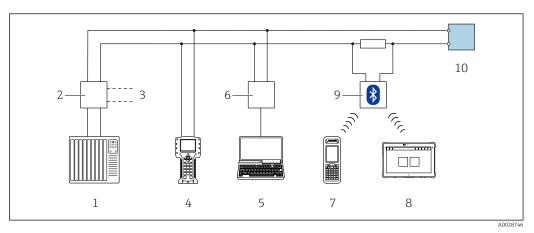
Verbindungskabel

→ 🖺 42


Abmessungen

→ 🖺 69

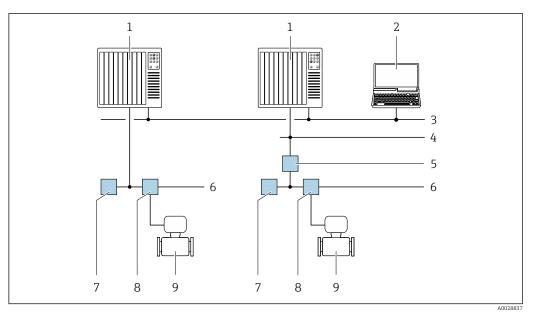
Fernbedienung


Via HART-Protokoll

 ${\tt Diese\ Kommunikations schnitt stelle\ ist\ bei\ Ger\"{a}teaus f\"{u}hrungen\ mit\ HART-Ausgang\ verf\"{u}gbar.}$

■ 43 Möglichkeiten der Fernbedienung via HART-Protokoll (aktiv)

- 1 Automatisierungssystem (z.B. SPS)
- 2 Field Communicator 475
- 3 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Gerätewebserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) mit COM DTM "CDI Communication TCP/IP"
- 4 Commubox FXA195 (USB)
- 5 Field Xpert SFX350 oder SFX370
- 6 Field Xpert SMT70
- 7 VIATOR Bluetooth-Modem mit Anschlusskabel
- 8 Messumformer

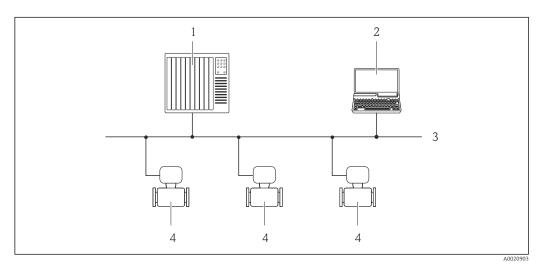


■ 44 Möglichkeiten der Fernbedienung via HART-Protokoll (passiv)

- 1 Automatisierungssystem (z.B. SPS)
- 2 Messumformerspeisegerät, z.B. RN221N (mit Kommunikationswiderstand)
- 3 Anschluss für Commubox FXA195 und Field Communicator 475
- 4 Field Communicator 475
- 5 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Gerätewebserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) mit COM DTM "CDI Communication TCP/IP"
- 6 Commubox FXA195 (USB)
- 7 Field Xpert SFX350 oder SFX370
- 8 Field Xpert SMT70
- 9 VIATOR Bluetooth-Modem mit Anschlusskabel
- 10 Messumformer

Via FOUNDATION Fieldbus Netzwerk

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit FOUNDATION Fieldbus verfügbar.

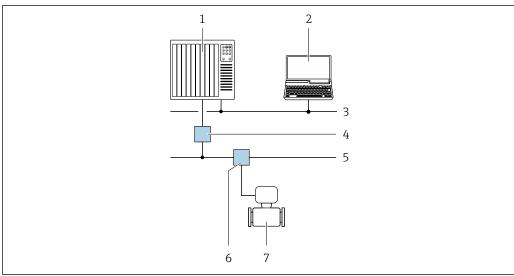


■ 45 Möglichkeiten der Fernbedienung via FOUNDATION Fieldbus Netzwerk

- 1 Automatisierungssystem
- 2 Computer mit FOUNDATION Fieldbus Netzwerkkarte
- 3 Industrienetzwerk
- 4 High Speed Ethernet FF-HSE Netzwerk
- 5 Segmentkoppler FF-HSE/FF-H1
- 6 FOUNDATION Fieldbus FF-H1 Netzwerk
- 7 Versorgung FF-H1 Netzwerk
- 8 T-Verteiler
- 9 Messgerät

Via PROFIBUS DP Netzwerk

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit PROFIBUS DP verfügbar.

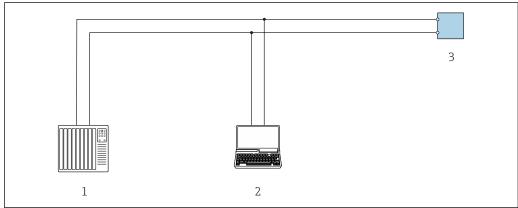


 \blacksquare 46 Möglichkeiten der Fernbedienung via PROFIBUS DP Netzwerk

- 1 Automatisierungssystem
- 2 Computer mit PROFIBUS-Netzwerkkarte
- 3 PROFIBUS DP Netzwerk
- 4 Messgerät

Via PROFIBUS PA Netzwerk

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit PROFIBUS PA verfügbar.


A0028838

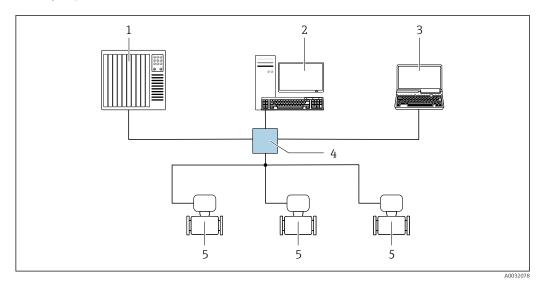
 \blacksquare 47 Möglichkeiten der Fernbedienung via PROFIBUS PA Netzwerk

- 1 Automatisierungssystem
- 2 Computer mit PROFIBUS-Netzwerkkarte
- 3 PROFIBUS DP Netzwerk
- 4 Segmentkoppler PROFIBUS DP/PA
- 5 PROFIBUS PA Netzwerk
- 6 T-Verteiler
- 7 Messgerät

Via Modbus-RS485-Protokoll

 $\label{lem:continuous} Diese \ Kommunikationsschnittstelle \ ist bei \ Ger\"{a}teausf\"{u}hrungen \ mit \ Modbus-RS485-Ausgang \ verf\"{u}g-bar.$

A0029437

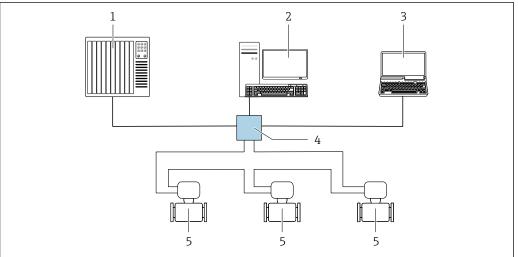

■ 48 Möglichkeiten der Fernbedienung via Modbus-RS485-Protokoll (aktiv)

- 1 Automatisierungssystem (z.B. SPS)
- 2 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Gerätewebserver oder mit Bedientool (z.B. FieldCare, DeviceCare) mit COM DTM "CDI Communication TCP/IP" oder Modbus DTM
- 3 Messumformer

Via EtherNet/IP-Netzwerk

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit EtherNet/IP verfügbar.

Sterntopologie



🛮 49 Möglichkeiten der Fernbedienung via EtherNet/IP-Netzwerk: Sterntopologie

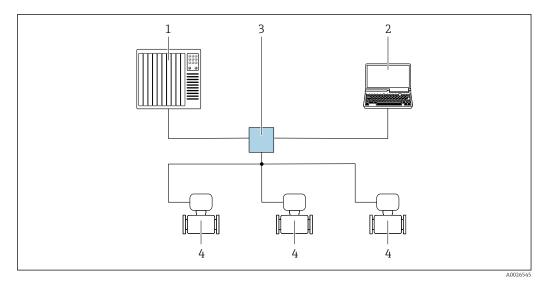
- 1 Automatisierungssystem, z.B. "RSLogix" (Rockwell Automation)
- 2 Workstation zur Messgerätbedienung: Mit Custom Add-On Profile für "RSLogix 5000" (Rockwell Automation) oder mit Electronic Data Sheet (EDS)
- 3 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Gerätewebserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare) mit COM DTM "CDI Communication TCP/IP"
- 4 Ethernet-Switch
- 5 Messgerät

Ringtopologie

Die Einbindung erfolgt über den Anschluss für die Signalübertragung (Ausgang 1) und die Serviceschnittstelle (CDI-RJ45).

■ 50 Möglichkeiten der Fernbedienung via EtherNet/IP-Netzwerk: Ringtopologie

- 1 Automatisierungssystem, z.B. "RSLogix" (Rockwell Automation)
- 2 Workstation zur Messgerätbedienung: Mit Custom Add-On Profile für "RSLogix 5000" (Rockwell Automation) oder mit Electronic Data Sheet (EDS)
- 3 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Gerätewebserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare) mit COM DTM "CDI Communication TCP/IP"
- 4 Ethernet-Switch
- 5 Messgerät

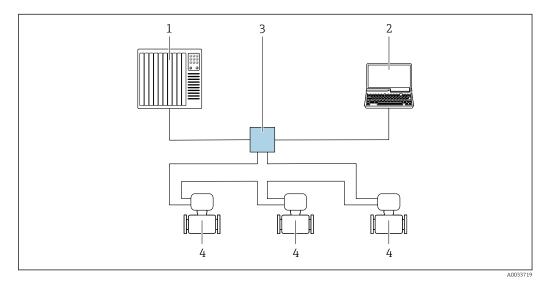

Via PROFINET-Netzwerk

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit PROFINET verfügbar.

Endress+Hauser 89

A0033725

Sterntopologie



■ 51 Möglichkeiten der Fernbedienung via PROFINET-Netzwerk: Sterntopologie

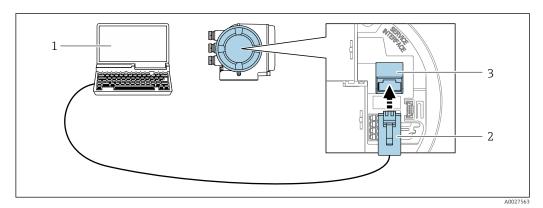
- 1 Automatisierungssystem, z.B. Simatic S7 (Siemens)
- 2 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Gerätewebserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare, SIMATIC PDM) mit COM DTM "CDI Communication TCP/IP"
- 3 Switch, z.B. Scalance X204 (Siemens)
- 4 Messgerät

Ringtopologie

Diese Kommunikationsschnittstelle ist bei Geräteausführungen mit PROFINET verfügbar.

🗷 52 Möglichkeiten der Fernbedienung via PROFINET-Netzwerk: Ringtopologie

- 1 Automatisierungssystem, z.B. Simatic S7 (Siemens)
- 2 Computer mit Webbrowser (z.B. Internet Explorer) zum Zugriff auf integrierten Gerätewebserver oder Computer mit Bedientool (z.B. FieldCare, DeviceCare, SIMATIC PDM) mit COM DTM "CDI Communication TCP/IP"
- 3 Switch, z.B. Scalance X204 (Siemens)
- 4 Messgerät

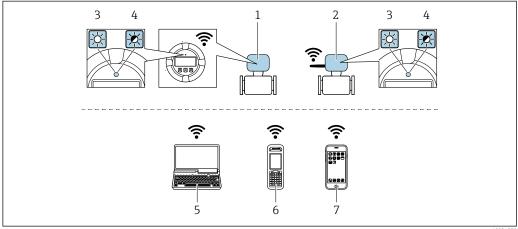

Serviceschnittstelle

Via Serviceschnittstelle (CDI-RJ45)

Um eine Konfiguration des Geräts vor Ort durchzuführen kann eine Punkt zu Punkt Verbindung aufgebaut werden. Der Anschluss erfolgt bei geöffnetem Gehäuse direkt über die Serviceschnittstelle (CDI-RJ45) des Geräts.

Optional ist ein Adapter für RJ45 auf M12 Stecker erhältlich: Bestellmerkmal "Zubehör", Option NB: "Adapter RJ45 M12 (Serviceschnittstelle)"

Der Adapter verbindet die Serviceschnittstelle (CDI-RJ45) mit einem in der Kabeleinführung montierten M12 Stecker. Der Anschluss an die Serviceschnittstelle kann dadurch ohne Öffnen des Geräts über einen M12 Stecker erfolgen.



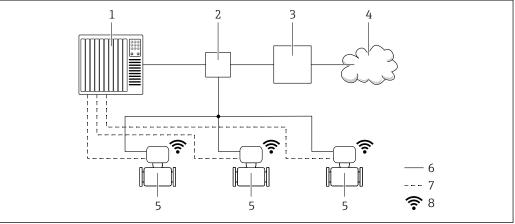
■ 53 Anschluss via Serviceschnittstelle (CDI-RJ45)

- Computer mit Webbrowser (z.B. Microsoft Internet Explorer, Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder mit Bedientool "FieldCare", "DeviceCare" mit COM DTM "CDI Communication TCP/IP" oder Modbus DTM
- Standard-Ethernet-Verbindungskabel mit RJ45-Stecker
- Serviceschnittstelle (CDI-RJ45) des Messgeräts mit Zugriff auf integrierten Webserver

Via WLAN-Schnittstelle

Die optionale WLAN-Schnittstelle ist bei folgender Geräteausführung vorhanden: Bestellmerkmal "Anzeige; Bedienung", Option G "4-zeilige, beleuchtete, grafische Anzeige; Touch Control + WLAN"

A0034570


- Messumformer mit integrierter WLAN-Antenne
- Messumformer mit externer WLAN-Antenne 2
- LED leuchtet konstant: WLAN-Empfang am Messgerät ist aktiviert
- LED blinkt: WLAN-Verbindung zwischen Bediengerät und Messgerät ist hergestellt
- Computer mit WLAN-Schnittstelle und Webbrowser (z.B. Microsoft Internet Explorer, Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder mit Bedientool (z.B. FieldCare, DeviceCare)
- Mobiles Handbediengerät mit WLAN-Schnittstelle und Webbrowser (z.B. Microsoft Internet Explorer, Microsoft Edge) zum Zugriff auf integrierten Gerätewebserver oder Bedientool (z.B. FieldCare, DeviceCare)
- Smartphone oder Tablet (z.B. Field Xpert SMT70)

Funktion	WLAN: IEEE 802.11 b/g (2,4 GHz) • Access Point mit DHCP Server (Werkeinstellung) • Netzwerk	
Verschlüsselung	WPA2-PSK AES-128 (gemäß IEEE 802.11i)	
Einstellbare WLAN Kanäle	1 bis 11	
Schutzart	IP67	
Verfügbare Antennen	 Interne Antenne Externe Antenne (optional) Bei schlechten Sende-/Empfangsbedingungen am Montageort. Als Zubehör verfügbar → 101. Jeweils nur 1 Antenne aktiv! 	
Max. Reichweite	50 m (164 ft)	
Werkstoffe: Externe WLAN-Antenne	 Antenne: Kunststoff ASA (acrylic ester-styrene-acrylonitrile) und Messing vernickelt Adapter: Rostfreier Stahl und Messing vernickelt Kabel: Polyethylen Stecker: Messing vernickelt Befestigungswinkel: Rostfreier Stahl 	

Netzwerk Integration

Mit dem optionalen Anwendungspaket OPC-UA-Server kann das Gerät über die Serviceschnittstelle (CDI-RJ45 und WLAN) in ein Ethernet-Netzwerk eingebunden werden und mit OPC-UA Clienten kommunizieren. Bei dieser Verwendung ist auf die IT-Sicherheit zu achten.

Für einen dauerhaften Zugriff auf Gerätedaten und zur Konfiguration über Webserver wird das Gerät über Serviceschnittstelle (CDI-RJ45) direkt in ein Netzwerk eingebunden werden. Damit kann von der Leitstelle aus jederzeit auf das Gerät zugegriffen werden. Die Verarbeitung der Messwerte über die Ein- und Ausgänge erfolgt separat über das Automatisierungssystem.

- 1 Automatisierungssystem, z.B. Simatic S7 (Siemens)
- 2 Ethernet Switch
- 3 Edge Gateway
- 4 Cloud
- 5 Messgerät
- 6 Ethernet Netzwerk
- Messwerte über Ein- und Ausgänge
- Optionale WLAN-Schnittstelle
- Die optionale WLAN-Schnittstelle ist bei folgender Geräteausführung vorhanden: Bestellmerkmal "Anzeige; Bedienung", Option **G** "4-zeilige, beleuchtete, grafische Anzeige; Touch Control + WLAN"

Unterstützte Bedientools

Für den lokalen Zugriff oder den Fernzugriff auf das Messgerät können verschiedene Bedientools verwendet werden. Abhängig vom verwendeten Bedientool kann der Zugriff mithilfe von unterschiedlichen Bediengeräten und via verschiedene Schnittstellen erfolgen.

Unterstützte Bedientools	Bediengerät	Schnittstelle	Weitere Informationen
Webbrowser	Notebook, PC oder Tablet mit Webbrowser	 Serviceschnittstelle CDI-RJ45 WLAN-Schnittstelle Ethernet-basierter Feldbus (EtherNet/IP, PROFINET) 	Sonderdokumentation zum Gerät → 🖺 105
DeviceCare SFE100	Notebook, PC oder Tab- let mit Microsoft Wind- ows-System	Serviceschnittstelle CDI-RJ45WLAN-SchnittstelleFeldbus-Protokoll	→ 🖺 103
FieldCare SFE500	Notebook, PC oder Tab- let mit Microsoft Wind- ows-System	Serviceschnittstelle CDI-RJ45WLAN-SchnittstelleFeldbus-Protokoll	→ 🖺 103
Device Xpert	Field Xpert SFX 100/350/370	Feldbus-Protokoll HART und FOUNDATION Fieldbus	Betriebsanleitung BA01202S Gerätebeschreibungsdateien: Updatefunktion vom Handbe- diengerät verwenden

Weitere Bedientools auf Basis FDT Technologie mit einem Gerätetreiber wie DTM/iDTM oder DD/EDD sind für die Gerätebedienung nutzbar. Diese Bedientools sind bei den jeweiligen Herstellern erhältlich. Es wird eine Integration u.a. in folgende Bedientools unterstützt:

- FactoryTalk AssetCentre (FTAC) von Rockwell Automation → www.rockwellautomation.com
- Process Device Manager (PDM) von Siemens → www.siemens.com
- Asset Management Solutions (AMS) von Emerson \rightarrow www.emersonprocess.com
- FieldCommunicator 375/475 von Emerson → www.emersonprocess.com
- Field Device Manager (FDM) von Honeywell → www.honeywellprocess.com
- FieldMate von Yokogawa → www.yokogawa.com
- PACTWare → www.pactware.com

Die zugehörigen Gerätebeschreibungsdateien sind verfügbar: www.endress.com → Downloads

Webserver

Aufgrund des integrierten Webservers kann das Gerät über einen Webbrowser und via Serviceschnittstelle (CDI-RJ45) oder via WLAN-Schnittstelle bedient und konfiguriert werden. Der Aufbau des Bedienmenüs ist dabei derselbe wie bei der Vor-Ort-Anzeige. Neben den Messwerten werden auch Statusinformationen zum Gerät dargestellt und ermöglichen eine Kontrolle des Gerätezustands. Zusätzlich können die Daten vom Gerät verwaltet und die Netzwerkparameter eingestellt werden.

Für die WLAN-Verbindung wird ein Gerät benötigt, das über eine optional bestellbare WLAN-Schnittstelle verfügt: Bestellmerkmal "Anzeige; Bedienung", Option ${\bf G}$ "4-zeilig beleuchtet; Touch Control + WLAN". Das Gerät dient als Access Point und ermöglicht eine Kommunikation mittels Computer oder mobilem Handbediengerät.

Unterstütze Funktionen

Datenaustausch zwischen Bediengerät (wie z.B. Notebook) und Messgerät:

- Konfiguration vom Messgerät laden (XML-Format, Konfiguration sichern)
- Konfiguration ins Messgerät speichern (XML-Format, Konfiguration wieder herstellen)
- Export der Eventliste (.csv-Datei)
- Export der Parametereinstellungen (.csv-Datei oder PDF-Datei, Dokumentation der Konfiguration der Messstelle erstellen)
- Export des Verifikationsprotokolls Heartbeat (PDF-Datei, nur mit dem Anwendungspaket "Heartbeat Verification" verfügbar)

- Flashen der Firmware-Version für z.B. Upgrade der Geräte-Firmware
- Download Treiber für Systemintegration

Sonderdokumentation Webserver → 105

HistoROM Datenmanagement

Das Messgerät verfügt über ein HistoROM Datenmanagement. Das HistoROM Datenmanagement umfasst sowohl die Speicherung als auch das Importieren und Exportieren wichtiger Geräte- und Prozessdaten. Dadurch können Betriebs- und Serviceeinsätze wesentlich sicherer und effizienter durchgeführt werden.

Im Auslieferungszustand sind die Werkseinstellungen der Parametrierdaten als Sicherung im Gerätespeicher hinterlegt. Dieser kann z.B. nach der Inbetriebnahme mit einem aktualisierten Datensatz überschrieben werden.

Zusatzinformationen Speicherkonzept

Es gibt verschiedene Speicher, in denen Gerätedaten gespeichert und vom Gerät genutzt werden:

	Gerätespeicher	T-DAT	S-DAT
Verfügbare Daten	 Ereignis-Logbuch wie z.B. Diagnoseereignisse Sicherung eines Parameterdatensatzes Firmwarepaket des Geräts Treiber für Systemintegration zum Export via Webserver z.B.: GSD für PROFIBUS DP GSD für PROFIBUS PA GSDML für PROFINET EDS für EtherNet/IP DD für FOUNDATION Fieldbus 	 Messwertspeicherung (Bestelloption "Extended HistoROM") Aktueller Parameterdatensatz (wird zur Laufzeit durch Firmware verwendet) Schleppzeiger (Min/Max-Werte) Summenzählerwerte 	 Messaufnehmerdaten: Nennweite etc. Seriennummer Kalibrierdaten Messgerätekonfiguration (z.B. SW-Optionen, fixes I/O oder Multi I/O)
Speicherort	Fix auf der Nutzerschnittstellenleiterplatte im Anschlussraum	Steckbar auf der Nutzerschnittstellenleiterplatte im Anschlussraum	Im Sensorstecker im Messumformer- Halsteil

Datensicherung

Automatisch

- Automatische Speicherung der wichtigsten Gerätedaten (Messaufnehmer und -umformer) in den DAT-Modulen
- Im Austauschfall Messumformer oder Messgerät: Nach Austausch des T-DATs mit bisherigen Gerätedaten steht das neue Messgerät sofort und fehlerfrei wieder in Betrieb
- Im Austauschfall Messaufnehmer: Nach Austausch des Messaufnehmers werden neue Messaufnehmerdaten aus S-DAT im Messgerät übernommen und das Messgerät steht sofort und fehlerfrei in Betrieb
- Im Austauschfall Elektronikmodul (z.B. I/O-Elektronikmodul): Nach Austausch des Elektronikmoduls wird die Software des Moduls mit der vorhandenen Gerätefirmware verglichen. Im Bedarfsfall erfolgt ein Up- oder Downgrade der Software des Moduls. Anschließend ist das Elektronikmodul sofort einsatzbereit und es tritt kein Kompatibilitätsfehler auf.

Manuell

Zusätzlicher Parameterdatensatz (komplette Parametereinstellungen) im integrierten Gerätespeicher HistoROM Backup für:

- Datensicherungsfunktion
 Sicherung und spätere Wiederherstellung einer Geräteparametrierung im Gerätespeicher HistoROM Backup
- Datenvergleichsfunktion
 Vergleich der aktuellen Geräteparametrierung mit der im Gerätespeicher HistoROM Backup gespeicherten Geräteparametrierung

Datenübertragung

Manuell

- Übertragung einer Geräteparametrierung auf ein anderes Gerät mithilfe der Exportfunktion des jeweiligen Bedientools, z.B. mit FieldCare, DeviceCare oder Webserver: Zum Duplizieren der Parametrierung oder zur Ablage in ein Archiv (z.B. zwecks Sicherung)
- Übertragung der Treiber für die Systemintegration via Webserver, z.B.:
 - GSD für PROFIBUS DP
 - GSD für PROFIBUS PA
 - GSDML für PROFINET
 - EDS für EtherNet/IP
 - DD für FOUNDATION Fieldbus

Ereignisliste

Automatisch

- Chronologische Anzeige von max. 20 Ereignismeldungen in der Ereignisliste
- Mit Freischaltung des Anwendungspakets Extended HistoROM (Bestelloption): Anzeige von bis zu 100 Ereignismeldungen in der Ereignisliste mit Zeitstempel, Klartextbeschreibung und Behebungsmaßnahmen
- Export und Anzeige der Ereignisliste über verschiedene Schnittstellen und Bedientools z.B. Device-Care, FieldCare oder Webserver

Messwertspeicher

Manuell

Mit Freischaltung des Anwendungspakets **Extended HistoROM** (Bestelloption):

- Aufzeichnung über 1 bis 4 Kanäle von bis zu 1000 Messwerten
- Frei konfigurierbares Aufzeichnungsintervall
- Aufzeichnung von bis zu 250 Messwerten über jeden der 4 Speicherkanäle
- Export der Messwertaufzeichnung über verschiedene Schnittstellen und Bedientools z.B. Field-Care, DeviceCare oder Webserver

Zertifikate und Zulassungen

Aktuell verfügbare Zertifikate und Zulassungen sind über den Produktkonfigurator abrufbar.

CE-Zeichen

Das Gerät erfüllt die gesetzlichen Anforderungen der anwendbaren EU-Richtlinien. Diese sind zusammen mit den angewandten Normen in der entsprechenden EU-Konformitätserklärung aufgeführt.

Endress+Hauser bestätigt die erfolgreiche Prüfung des Geräts mit der Anbringung des CE-Zeichens.

C-Tick Zeichen

Das Messsystem stimmt überein mit den EMV-Anforderungen der Behörde "Australian Communications and Media Authority (ACMA)".

Ex-Zulassung

Das Messgerät ist zum Einsatz im explosionsgefährdeten Bereich zertifiziert und die zu beachtenden Sicherheitshinweise im separaten Dokument "Safety Instructions" (XA) beigefügt. Dieses ist auf dem Typenschild referenziert.

Die separate Ex-Dokumentation (XA) mit allen relevanten Daten zum Explosionsschutz ist bei Ihrer Endress+Hauser Vertriebszentrale erhältlich.

ATEX/IECEx

Aktuell sind die folgenden Ex-Ausführungen lieferbar:

Ex db eb

Kategorie	Zündschutzart
II1/2G	Ex db eb ia IIC T6T1 Ga/Gb ¹⁾
II2G	Ex db eb ia IIC T6T1 Gb

1) Für Messaufnehmer mit Nennweite DN 01 gilt: Ex db eb ia IIC T6...T1 Gb

Ex db

Kategorie	Zündschutzart
II1/2G	Ex db ia IIC T6T1 Ga/Gb ¹⁾
II2G	Ex db ia IIC T6T1 Gb

1) Für Messaufnehmer mit Nennweite DN 01 gilt: Ex db eb ia IIC T6...T1 Gb

Ех ес

Kategorie	Zündschutzart
II3G	Ex ec IIC T5T1 Gc

Ex tb

Kategorie	Zündschutzart	
II2D	Ex tb IIIC T** °C Db	

$_{C}CSA_{US}$

Aktuell sind die folgenden Ex-Ausführungen lieferbar:

IS (Ex i) und XP (Ex d)

Class I, III, III Division 1 Groups A-G

NI (Ex nA)

Class I Division 2 Groups A-D

Fx de

- Class I, Zone 1 AEx/ Ex de ia IIC T6...T1 Ga/Gb
 (Für Messaufnehmer mit Nennweite DN 01 gilt: Class I, Zone 1 AEx/ Ex de ia IIC T6...T1 Gb)
- Class I, Zone 1 AEx/ Ex de ia IIC T6...T1 Gb

Ex d

- Class I, Zone 1 AEx/ Ex d ia IIC T6...T1 Ga/Gb (Für Messaufnehmer mit Nennweite DN 01 gilt: Class I, Zone 1 AEx/ Ex d ia IIC T6...T1 Gb)
- Class I, Zone 1 AEx/ Ex d ia IIC T6...T1 Gb

Ex nA

Class I, Zone 2 AEx/ Ex nA IIC T5...T1 Gc

Ex tb

Zone 21 AEx/ Ex tb IIIC T** °C Db

Lebensmitteltauglichkeit

■ 3-A-Zulassung

Nur Geräte mit dem Bestellmerkmal "Weitere Zulassung", Option LP "3-A" verfügen über eine 3-A-Zulassung.

- FDA
- Food Contact Materials Regulation (EC) 1935/2004

Pharmatauglichkeit

- FDA
- USP Class VI
- TSE/BSE Eignungs-Zertifikat

Funktionale Sicherheit

Das Messgerät ist für Durchflussüberwachungen (Min., Max., Bereich) bis SIL 2 (einkanalige Architektur; Bestellmerkmal "Weitere Zulassung", Option LA) und SIL 3 (mehrkanalige Architektur mit homogener Redundanz) einsetzbar und durch TÜV nach IEC 61508 unabhängig beurteilt und zertifiziert

Folgende Überwachungen in Schutzeinrichtungen sind möglich:

- Massedurchfluss
- Volumendurchfluss
- Dichte
- i

Handbuch zur Funktionalen Sicherheit mit Informationen zum SIL-Gerät $\rightarrow~\cong~104$

Zertifizierung HART

HART Schnittstelle

Das Messgerät ist von der FieldComm Group zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß HART 7
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Zertifizierung FOUNDATION Fieldbus

FOUNDATION Fieldbus Schnittstelle

Das Messgerät ist von der FieldComm Group zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert qemäß FOUNDATION Fieldbus H1
- Interoperability Test Kit (ITK), Revisionsstand 6.2.0 (Zertifikat auf Anfrage erhältlich)
- Physical Layer Conformance Test
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Zertifizierung PROFIBUS

PROFIBUS Schnittstelle

Das Messgerät ist von der PNO (PROFIBUS Nutzerorganisation e. V.) zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß PROFIBUS PA Profile 3.02
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Zertifizierung EtherNet/IP

Das Messgerät ist von der ODVA (Open Device Vendor Association) zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß dem ODVA Conformance Test
- EtherNet/IP Performance Test
- EtherNet/IP PlugFest Konform
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Zertifizierung PROFINET

PROFINET-Schnittstelle

Das Messgerät ist von der PNO (PROFIBUS Nutzerorganisation e. V.) zertifiziert und registriert. Das Gerät erfüllt alle Anforderungen der folgenden Spezifikationen:

- Zertifiziert gemäß:
 - Test Spezifikation für PROFINET devices
 - PROFINET Security Level 2 Netload Class
- Das Gerät kann auch mit zertifizierten Geräten anderer Hersteller betrieben werden (Interoperabilität)

Funkzulassung

Das Messgerät besitzt die Funkzulassung.

Detaillierte Informationen zur Funkzulassung: Sonderdokumentation $\rightarrow \stackrel{ riangle}{=} 105$

Weitere Zertifizierungen

CRN-Zulassung

Für einige Gerätevarianten gibt es eine CRN-Zulassung. Für ein CRN-zugelassenes Gerät muss ein CRN-zugelassener Prozessanschluss mit einer CSA-Zulassung bestellt werden.

Tests und Zeugnisse

- Druckprüfung, internes Verfahren, Abnahmeprüfzeugnis
- EN10204-3.1 Materialnachweis, mediumberührte Teile und Messaufnehmergehäuse
- PMI-Test (XRF), internes Verfahren, mediumberührte Teile, Testbericht
- NACE MR0175 / ISO 15156
- NACE MR0103 / ISO 17945

Prüfung von Schweißverbindungen

Option	Prüfnorm			Prozessan-	
	ISO 10675-1 AL1	ASME B31.3 NFS	ASME VIII Div.1	NORSOK M-601	schluss
KE	х				RT
KI		х			RT
KN			х		RT
KS				х	RT
K5	х				DR
К6		х			DR
K7			Х		DR
К8				х	DR
DT - Durchetrahlprüfung DD - Digitale Päntgenprüfung					

RT = Durchstrahlprüfung, DR = Digitale Röntgenprüfung Alle Optionen mit Testbericht

Externe Normen und Richtlinien

■ EN 60529

Schutzarten durch Gehäuse (IP-Code)

■ IEC/EN 60068-2-6

Umgebungseinflüsse: Prüfverfahren - Prüfung Fc: Schwingen (sinusförmig).

■ IEC/EN 60068-2-31

Umgebungseinflüsse: Prüfverfahren - Prüfung Ec: Schocks durch raue Handhabung, vornehmlich für Geräte.

■ EN 61010-1

Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte - Allgemeine Anforderungen

■ IEC/EN 61326

Emission gemäß Anforderungen für Klasse A. Elektromagnetische Verträglichkeit (EMV-Anforderungen).

NAMUR NE 21

Elektromagnetische Verträglichkeit von Betriebsmitteln der Prozess- und Labortechnik

■ NAMUR NE 32

Sicherung der Informationsspeicherung bei Spannungsausfall bei Feld- und Leitgeräten mit Mikroprozessoren

■ NAMUR NE 43

Vereinheitlichung des Signalpegels für die Ausfallinformation von digitalen Messumformern mit analogem Ausgangssignal.

■ NAMUR NE 53

Software von Feldgeräten und signalverarbeitenden Geräten mit Digitalelektronik

■ NAMUR NE 105

Anforderungen an die Integration von Feldbus-Geräten in Engineering-Tools für Feldgeräte

■ NAMUR NE 107

Selbstüberwachung und Diagnose von Feldgeräten

NAMUR NE 131

Anforderungen an Feldgeräte für Standardanwendungen

■ NAMUR NE 132

Coriolis-Massemesser

■ ETSI EN 300 328

Vorschriften für 2,4-GHz-Funkkomponenten.

■ EN 301489

Elektromagnetische Verträglichkeit und Funkspektrumangelegenheiten (ERM).

Bestellinformationen

Ausführliche Bestellinformationen sind verfügbar:

- Im Produktkonfigurator auf der Endress+Hauser Internetseite: www.endress.com -> "Corporate" klicken -> Land wählen -> "Products" klicken -> Produkt mit Hilfe der Filter und Suchmaske auswählen -> Produktseite öffnen -> Die Schaltfläche "Konfiguration" rechts vom Produktbild öffnet den Produktkonfigurator.
- Bei Ihrer Endress+Hauser Vertriebszentrale: www.addresses.endress.com

Produktkonfigurator - das Tool für individuelle Produktkonfiguration

- Tagesaktuelle Konfigurationsdaten
- Je nach Gerät: Direkte Eingabe von messstellenspezifischen Angaben wie Messbereich oder Bediensprache
- Automatische Überprüfung von Ausschlusskriterien
- Automatische Erzeugung des Bestellcodes mit seiner Aufschlüsselung im PDF- oder Excel-Ausgabeformat
- Direkte Bestellmöglichkeit im Endress+Hauser Onlineshop

Produktgenerationsindex

Freigabedatum Produktwurzel		Dokumentation
01.05.2018	8A3C	TI01374D

Ergänzende Information erhalten Sie bei Ihrer Vertriebszentrale oder unter:

www.service.endress.com → Downloads

Anwendungspakete

Um die Funktionalität des Geräts je nach Bedarf zu erweitern, sind für das Gerät verschiedene Anwendungspakete lieferbar: z.B. aufgrund von Sicherheitsaspekten oder spezifischer Anforderungen von Applikationen.

Die Anwendungspakete können bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Website: www.endress.com.

Detaillierte Angaben zu den Anwendungspaketen: Sonderdokumentationen zum Gerät → 🖺 104

Diagnosefunktionalitäten

Paket	Beschreibung	
Extended HistoROM	Umfasst Erweiterungen bezüglich Ereignislogbuch und Freischaltung des Messwertspeichers.	
	Ereignislogbuch: Speichervolumen wird von 20 Meldungseinträgen (Standardausführung) auf bis zu 100 erweitert.	
	Messwertspeicher (Linienschreiber): Speichervolumen wird für bis zu 1000 Messwerte aktiviert. 250 Messwerte können über jeden der 4 Speicherkanäle ausgegeben werden. Aufzeichnungsintervall ist frei konfigurierbar. Auf Messwertaufzeichnungen kann via Vor-Ort-Anzeige oder Bedientool z.B. FieldCare, DeviceCare oder Webserver zugegriffen werden.	

Heartbeat Technology	Paket	Beschreibung		
	Heartbeat Verification +Monitoring	Heartbeat Verification Erfüllt die Anforderung an die rückführbare Verifikation nach DIN ISO 9001:2008 Kapitel 7.6 a) "Lenkung von Überwachungs- und Messmitteln". Funktionsprüfung im eingebauten Zustand ohne Prozessunterbrechung. Rückverfolgbare Verifikationsergebnisse auf Anforderung, inklusive Bericht. Einfacher Prüfablauf über Vor-Ort-Bedienung oder weitere Bedienschnittstellen. Eindeutige Messstellenbewertung (Bestanden / Nicht bestanden) mit hoher Testabdeckung im Rahmen der Herstellerspezifikation. Verlängerung von Kalibrationsintervallen gemäß Risikobewertung durch Betreiber.		
		Heartbeat Monitoring Liefert kontinuierlich für das Messprinzip charakteristische Daten an ein externes Condition Monitoring System zum Zweck der vorbeugenden Wartung oder der Pro- zessanalyse. Diese Daten ermöglichen: Im Kontext mit weiteren Informationen, Rückschlüsse auf die zeitliche Beein- trächtigung der Messleistung durch Prozesseinflüsse (etwa Korrosion, Abrasion, Belagsbildung etc.). Die rechtzeitige Planung von Serviceeinsätzen. Die Überwachung der Prozess- oder Produktqualität, z.B. Gaseinschlüsse.		
Konzentration	Paket	Beschreibung		
	Konzentration	Berechnung und Ausgabe von Fluidkonzentrationen		
		Die gemessene Dichte wird mit Hilfe des Anwendungspakets "Konzentration" in die Konzentration einer Substanz eines binären Gemisches umgerechnet: Auswahl vordefinierter Fluide (z.B. diverser Zuckerlösungen, Säuren, Laugen, Salze, Ethanol etc.) Allgemein gebräuchliche oder benutzerdefinierte Einheiten (*Brix, *Plato, % Masse, % Volumen, mol/l etc.) für Standardanwendungen. Konzentrationsberechnung aus benutzerdefinierten Tabellen.		
0 1 111				
Sonderdichte	Paket	Beschreibung		
	Sonderdichte	In vielen Anwendungen wird die Dichte als wichtiger Messwert zur Qualitätsüberwachung oder zur Prozesssteuerung verwendet. Das Messgerät misst standardmässig die Dichte des Fluides und stellt diesen Wert dem Kontrollsystem zur Verfügung.		

OPC-UA-Server

Paket	Beschreibung
OPC-UA-Server	Mit dem Anwendungspaket steht ein integrierter OPC-UA-Server für umfangreiche Gerätedienste für IoT- und SCADA-Anwendungen zur Verfügung.
	Sonderdokumentation zum Anwendungspaket "OPC-UA-Server" $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Insbesondere für Anwendungen unter wechselnden Prozessbedingungen bietet das Anwendungspaket "Sonderdichte" eine hochgenaue Dichtemessung über einen weiten Dichte- und Temperaturbereich.

Zubehör

Für das Gerät sind verschiedene Zubehörteile lieferbar, die bei Endress+Hauser mit dem Gerät bestellt oder nachbestellt werden können. Ausführliche Angaben zum betreffenden Bestellcode sind bei Ihrer Endress+Hauser Vertriebszentrale erhältlich oder auf der Produktseite der Endress+Hauser Webseite: www.endress.com.

Gerätespezifisches Zubehör

Zum Messumformer

Zubehör	Beschreibung
Messumformer Proline 300	Messumformer für den Austausch oder für die Lagerhaltung. Über den Bestellcode können folgende Spezifikationen angegeben werden: Zulassungen Ausgang Eingang Anzeige/Bedienung Gehäuse Software Bestellnummer: 8X3BXX Einbauanleitung EA01150
Abgesetztes Anzeige- und Bedienmodul DKX001	 Bei direkter Bestellung mit dem Messgerät: Bestellmerkmal "Anzeige; Bedienung", Option O "Getrennte Anzeige 4-zeilig beleuchtet; 10 m (30 ft) Kabel; Touch Control". Bei separater Bestellung: Messgerät: Bestellmerkmal "Anzeige; Bedienung", Option M "Ohne, Vorbereitet für getrennte Anzeige". DKX001: Über die separate Bestellstruktur DKX001. Bei nachträglicher Bestellung: DKX001: Über die separate Bestellstruktur DKX001. Montagebügel für DKX001 Direkte Bestellung mit dem DKX001:
Externe WLAN-Antenne	Externe WLAN-Antenne mit 1,5 m (59,1 in) Verbindungskabel und zwei Befestigungswinkel. Bestellmerkmal "Zubehör beigelegt", Option P8 "Wireless Antenne Weitbereich". ■ Die externe WLAN-Antenne ist nicht für den Einsatz in hygienischen Anwendungen geeignet. ■ Weitere Angaben zur WLAN-Schnittstelle → 🗎 91. ■ Bestellnummer: 71351317 ■ Einbauanleitung EA01238D
Wetterschutzhaube	Wird dazu verwendet, das Messgerät vor Wettereinflüssen zu schützen: z.B. vor Regenwasser, übermäßiger Erwärmung durch Sonneneinstrahlung. Bestellnummer: 71343505 Einbauanleitung EA01160

Zum Messaufnehmer

Zubehör	Beschreibung	
Heizmantel	Wird dazu verwendet, die Temperatur der Messstoffe im Messaufnehmer stabil zu halten. Als Messstoff sind Wasser, Wasserdampf und andere nicht korrosive Flüssigkeiten zugelassen.	
	Bei Verwendung von Öl als Heizmedium: Mit Endress+Hauser Rücksprache halten.	
	 Bei Bestellung zusammen mit dem Messgerät: Bestellmerkmal "Zubehör beigelegt"	
Sensorhalterung	Für Wand-, Tisch- und Rohrmontage.	
	Bestellnummer: 71392563	

Kommunikationsspezifisches Zubehör

Zubehör	Beschreibung		
Commubox FXA195 HART	Für die eigensichere HART-Kommunikation mit FieldCare über die USB-Schnittstelle. Technische Information TI00404F		
HART Loop Converter HMX50	Dient zur Auswertung und Umwandlung von dynamischen HART-Prozessvariablen in analoge Stromsignale oder Grenzwerte. Technische Information TI00429F		
Fieldgate FXA320	 Betriebsanleitung BA00371F Gateway zur Fernabfrage von angeschlossenen 4-20 mA-Messgeräten via Webbrowser. Technische Information TI00025S Betriebsanleitung BA00053S 		
Fieldgate FXA520	Gateway zur Ferndiagnose und Fernparametrierung von angeschlossenen HART-Messgeräten via Webbrowser. Technische Information TI00025S Betriebsanleitung BA00051S		
Field Xpert SFX350	Field Xpert SFX350 ist ein mobiler Computer für die Inbetriebnahme und Wartung. Er ermöglicht eine effiziente Gerätekonfiguration und Diagnose für HART und FOUNDATION Fieldbus Geräte und kann im nicht explosionsgefährdeten Bereich eingesetzt werden. Betriebsanleitung BA01202S		
Field Xpert SFX370	Field Xpert SFX370 ist ein mobiler Computer für die Inbetriebnahme und Wartung. Er ermöglicht eine effiziente Gerätekonfiguration und Diagnose für HART und FOUNDATION Fieldbus Geräte und kann sowohl im nicht explosionsgefährdeten Bereich als auch im explosionsgefährdeten Bereich eingesetzt werden. Betriebsanleitung BA01202S		
Field Xpert SMT70	Das Tablet PC Field Xpert SMT70 für die Gerätekonfiguration ermöglicht ein mobiles Plant Asset Management in explosions- und nicht explosionsgefährdeten Bereichen. Es eignet sich für das Inbetriebnahme- und Wartungspersonal, um Feldinstrumente mit digitaler Kommunikationsschnittstelle zu verwalten und den Arbeitsfortschritt zu dokumentieren. Dieses Tablet PC ist als Komplettlösung konzipiert, mit einer vorinstallierten Treiberbibliothek, stellt es ein einfaches und touchfähiges "Werkzeug" dar, über das sich die Feldinstrumente während ihres gesamten Lebenszyklus verwalten lassen.		
	 Technische Information TI01342S Betriebsanleitung BA01709S Produktseite: www.endress.com/smt70 		

Servicespezifisches Zubehör

Zubehör	Beschreibung
Applicator	Software für die Auswahl und Auslegung von Endress+Hauser Messgeräten: Auswahl von Messgeräten industriespezifischen Anforderungen Berechnung aller notwendigen Daten zur Bestimmung des optimalen Durchflussmessgeräts: z.B. Nennweite, Druckabfall, Durchflussgeschwindigkeit und Messgenauigkeiten. Grafische Darstellung von Berechnungsergebnissen Ermittlung des partiellen Bestellcodes Verwaltung, Dokumentation und Abrufbarkeit aller projektrelevanter Daten und Parameter über die gesamte Lebensdauer eines Projekts.
	Applicator ist verfügbar: • Über das Internet: https://portal.endress.com/webapp/applicator • Als downloadbare DVD für die lokale PC-Installation.
W@M	W@M Life Cycle Management Mehr Produktivität durch stets verfügbare Informationen. Daten zu einer Anlage und ihren Komponenten werden bereits während der Planung und später während des gesamten Lebenszyklus der Komponente erzeugt. W@M Life Cycle Management ist eine offene und flexible Informationsplattform mit Online- und Vor-Ort-Tools. Ihre Mitarbeiter haben direkten Zugriff auf aktuelle detaillierte Daten, wodurch sich Engineering-Zeiten verkürzen, Beschaffungspro- zesse beschleunigen und Betriebszeiten der Anlage steigern lassen. Zusammen mit den richtigen Services führt W@M Life Cycle Management in jeder Phase zu mehr Produktivität. Hierzu mehr unter: www.endress.com/lifecyclemanagement
FieldCare	FDT-basiertes Anlagen-Asset-Management-Tool von Endress+Hauser. Es kann alle intelligenten Feldeinrichtungen in Ihrer Anlage konfigurieren und unterstützt Sie bei deren Verwaltung. Durch Verwendung von Statusinformationen stellt es darüber hinaus ein einfaches, aber wirkungsvolles Mittel dar, deren Zustand zu kontrollieren. Betriebsanleitung BA00027S und BA00059S
DeviceCare	Tool zum Verbinden und Konfigurieren von Endress+Hauser Feldgeräten. Innovation-Broschüre IN01047S

Systemkomponenten

Zubehör	Beschreibung
Bildschirmschreiber Memograph M	Der Bildschirmschreiber Memograph M liefert Informationen über alle relevanten Messgrößen. Messwerte werden sicher aufgezeichnet, Grenzwerte überwacht und Messstellen analysiert. Die Datenspeicherung erfolgt im 256 MB großen internen Speicher und zusätzlich auf SD-Karte oder USB-Stick.
	Technische Information TI00133RBetriebsanleitung BA00247R
Cerabar M	Das Druckmessgerät zur Messung von Absolut- und Relativdruck von Gasen, Dämpfen und Flüssigkeiten. Es kann für das Einlesen des Betriebsdruckwerts verwendet werden.
	 Technische Information TI00426P und TI00436P Betriebsanleitung BA00200P und BA00382P
Cerabar S	Das Druckmessgerät zur Messung von Absolut- und Relativdruck von Gasen, Dämpfen und Flüssigkeiten. Es kann für das Einlesen des Betriebsdruckwerts verwendet werden.
	Technische Information TI00383PBetriebsanleitung BA00271P
iTEMP	Die Temperaturtransmitter sind universal einsetzbar und zur Messung von Gasen, Dämpfen und Flüssigkeiten geeignet. Sie können für das Einlesen der Messstoff- temperatur verwendet werden.
	Dokument "Fields of Activity" FA00006T

Ergänzende Dokumentation

Eine Übersicht zum Umfang der zugehörigen Technischen Dokumentation bieten:

- W@M Device Viewer (www.endress.com/deviceviewer): Seriennummer vom Typenschild ein-
- Endress+Hauser Operations App: Seriennummer vom Typenschild eingeben oder 2D-Matrixcode (QR-Code) auf dem Typenschild einscannen

Standarddokumentation

Kurzanleitung

Kurzanleitung zum Messaufnehmer

Messgerät	Dokumentationscode
Proline Promass A	KA01282D

Kurzanleitung zum Messumformer

	Dokumentationscode						
Messgerät	HART	FOUNDATION Fieldbus	PROFIBUS PA	PROFIBUS DP	Modbus RS485	EtherNet/IP	PROFINET
Proline 300	KA01309D	KA01229D	KA01227D	KA01386D	KA01311D	KA01339D	KA01341D

Betriebsanleitung

Messgerät	Dokumentationscode						
	HART	FOUNDATION Fieldbus	PROFIBUS PA	PROFIBUS DP	Modbus RS485	EtherNet/IP	PROFINET
Promass A 300	BA01816D	BA01843D	BA01841D	BA01857D	BA01884D	BA01842D	BA01840D

Beschreibung Geräteparameter

	Dokumentationscode						
Messgerät	HART	FOUNDATION Fieldbus	PROFIBUS PA	PROFIBUS DP	Modbus RS485	EtherNet/IP	PROFINET
Promass 300	GP01057D	GP01094D	GP01058D	GP01134D	GP01059D	GP01114D	GP01115D

Geräteabhängige Zusatzdokumentation

Sicherheitshinweise

Sicherheitshinweise für elektrische Betriebsmittel für explosionsgefährdete Bereiche.

Abgesetztes Anzeige- und Bedienmodul DKX001

Inhalt	Dokumentationscode
ATEX/IECEx Ex i	XA01494D
ATEX/IECEx Ex ec	XA01498D
cCSAus IS	XA01499D
cCSAus Ex nA	XA01513D
INMETRO Ex i	XA01500D
INMETRO Ex ec	XA01501D
NEPSI Ex i	XA01502D
NEPSI Ex nA	XA01503D

Sonderdokumentation

Inhalt	Dokumentationscode
Angaben zur Druckgeräterichtlinie	SD01614D
Handbuch zur Funktionalen Sicherheit	SD01727D
Abgesetztes Anzeige- und Bedienmodul DKX001	SD01763D
Funkzulassungen für WLAN-Schnittstelle für Anzeigemodul A309/A310	SD01793D
OPC-UA-Server 1)	SD02039D

1) Diese Sonderdokumentation ist nur bei Geräteausführungen mit HART-Ausgang verfügbar.

Inhalt	Dokumentationscode						
	HART	FOUNDATION Fieldbus	PROFIBUS PA	PROFIBUS DP	Modbus RS485	PROFINET	EtherNet/IP
Webserver	SD01662D	SD01665D	SD01664D	SD02226D	SD01663D	SD01969D	SD01968D
Heartbeat Technology	SD01642D	SD01696D	SD01698D	SD02202D	SD01697D	SD01988D	SD01982
Konzentrationsmes- sung	SD01644D	SD01706D	SD01708D	SD02212D	SD01707D	SD02005D	SD02004D

Einbauanleitung

Inhalt	Bemerkung
Einbauanleitung für Ersatzteilsets und Zubehör	Dokumentationscode: Bei den Zubehörteilen jeweils angegeben .

Eingetragene Marken

HART®

Eingetragene Marke der FieldComm Group, Austin, Texas, USA

PROFIBUS[®]

Eingetragene Marke der PROFIBUS Nutzerorganisation e.V., Karlsruhe, Deutschland

FOUNDATION™ Fieldbus

Angemeldete Marke der FieldComm Group, Austin, Texas, USA

Modbus[®]

Eingetragene Marke der SCHNEIDER AUTOMATION, INC.

EtherNet/IP™

Zeichen der ODVA, Inc.

PROFINET®

Eingetragene Marke der PROFIBUS Nutzerorganisation e.V., Karlsruhe, Deutschland

TRI-CLAMP®

Eingetragene Marke der Firma Ladish & Co., Inc., Kenosha, USA

SWAGELOK®

Eingetragene Marke der Firma Swagelok & Co., Solon, USA

