Auf dieser Webseite verwenden wir Cookies und ähnliche Technologien („Cookies“). Um deren Verwendung zur Analyse der Webseitenutzung und zur Steigerung der Funktionalität zu erlauben, klicken Sie bitte auf „Akzeptieren“. Um auszuwählen welche Cookies wir im Einzelnen verwenden dürfen, um Ihre Einstellungen zu ändern oder um detaillierte Informationen zu erhalten, klicken Sie auf „Details“.

Details

Ablehnen

Akzeptieren

Nachfolgend können Sie einzelne Technologien, die auf dieser Webseite verwendet werden, aktivieren/deaktivieren.
Zu allen einwilligen
Erforderlich

Diese Cookies machen eine Webseite nutzbar, indem sie Grundfunktionen wie Seitennavigation, Spracheinstellungen und Zugang zu geschützten Bereichen der Webseite bereitstellen. Da die Webseite ohne sie nicht ordnungsgemäß funktionieren kann, können Sie sich nicht von dieser Art von Cookies abmelden.

Funktionalität

Diese Cookies helfen uns, die Funktionalität und Attraktivität unserer Webseites und damit Ihr Nutzungserlebnis zu verbessern, indem Ihre z.B. Einstellungen, Auswahl und Filterung gespeichert werden und Ihr Gerät bei einem späteren Besuch wiedererkannt wird.

Analyse

Diese Cookies erlauben uns und den Dienstanbietern (z.B. Google über den Dienst Google Analytics), Informationen und Statistiken über Ihre Interaktion mit unserer Webseite zu erhalten und auszuwerten, um mit den gewonnenen Erkenntnissen unsere Webseite zu optimieren.

Mehr Infos
(Datenschutzerklärung)

Einstellungen speichern

DXQanalyze

Spüren Sie den Puls Ihrer Maschinen und Anlagen.

Die DXQanalyze-Produktfamilie ermöglicht eine umfassende Protokollierung aller verfügbaren Prozessdaten, um mögliche Qualitätsdefekte am Produkt oder eine sich abzeichnende Abnutzung der Geräte in Echtzeit zu erkennen. Das System nutzt auf einer übergeordneten Ebene verdichtete Daten, um basierend auf der dokumentierten Produktqualität Schlussfolgerungen über die Funktion einzelner Schritte entlang der Wertschöpfungskette zu ziehen. In Zukunft werden diese Informationen dazu verwendet werden, den Prozess automatisch anzupassen, um auf diese veränderten Rahmenbedingungen zu reagieren. Produkte unserer DXQanalyze-Produktfamilie nutzen künstliche Intelligenz, d. h. maschinelles Lernen, um Abweichungen zu erkennen und Muster abzuleiten.

Ihr Nutzen

  • Umfassende Analysemöglichkeiten für Data Scientists mit unterschiedlichem Erfahrungsniveau (Einsteiger, Fortgeschrittene, Experten)
  • Erhöhte Geräte-/Anlagenverfügbarkeit und Erstläuferquote durch schnellere Fehlerbehebung
  • Integriertes Domänenwissen in Analytics-Lösungen

DXQanalyze – Produkte

DXQequipment.analytics ermöglicht detaillierte Einblicke in verschiedene Prozessschritte und am Prozess beteiligte Anlagen entlang der gesamten Wertschöpfungskette. Mit dem Softwarepaket sollen alle Faktoren der Gesamtanlageneffektivität (Leistung des Systems, Qualität der Produktion, Verfügbarkeit der Anlage) verbessert werden. In einem ersten Schritt unterstützt DXQequipment.analytics durch eine Fehler-Ursachen-Analyse dabei, Fehler schneller zu beheben, indem kritische Situationen, erkannte Muster und überschrittene Schwellenwerte visualisiert werden. Anschließend erfolgt eine automatisierte Auswertung durch einen Builder für Analytics-Anwendungen mit Drag-and-drop-Funktion, um eigene Algorithmen zu erstellen. Mithilfe solcher Algorithmen können Daten automatisch ausgewertet und ein direktes Feedback in Echtzeit an die Maschine gesendet werden. Mit dem Modul Advanced Analytics werden Historiendaten und maschinelles Lernen dazu verwendet werden, die optimale Parametrierung von Algorithmen zu ermitteln und langfristige Trends und Muster zu erkennen. Die KI-Anwendung kombiniert IT-Technologie mit Maschinenbaukompetenz, identifiziert Fehlerquellen und ermittelt optimale Wartungszeitpunkte. Sie spürt Zusammenhänge in der Anlage auf und passt selbstlernend den Algorithmus an.

In Kombination mit selbstlernenden Algorithmen kann auch DXQplant.analytics lernen, Qualitätsprobleme automatisch zu identifizieren. Parallel zu DXQequipment.maintenance werden auch Informationen zu erkannten Wartungsaufgaben bereitgestellt.

DXQequipment.analytics basiert auf dem Expertenwissen von Dürr und kann für verschiedene Anlagentypen wie Applikationsroboter, Trockner und Systeme zur Vorbehandlung und kathodischen Tauchlackierung angeboten werden.

Funktionen

  • Streaminganalysen in Echtzeit zur Sicherung der Produktionsqualität
  • Selbstlernende Erkennung von Qualitätsabweichungen
  • Benutzerfreundliche Frontends für die Datenvisualisierung und Erstellung von Analysemodellen
  • Permanente Erfassung und Analyse von Gerätedaten
  • Maschinelles Lernen-Algorithmen für die Auswertung des Lackierprozesses und die Vorhersage von Anlagenausfällen

Ihr Nutzen

  • Schnellere Fehlerbehebung für eine höhere Anlagenverfügbarkeit
  • Erhöhte Erstläuferquote
  • Reduzierte Stillstandszeiten der Anlagen
  • Optimierte Identifikation von Fehlerursachen

Mit DXQplant.analytics soll die Erstläuferquote von Produktionssystemen verbessert werden. Zunächst werden auf Dashboards und in Berichten Leistungskennzahlen angezeigt, um die Transparenz des Produktqualitätsstatus innerhalb eines Qualitätskreislaufs zu verbessern. In einem zweiten Schritt werden mittels intelligenter Mustererkennung systematische Qualitätsprobleme ermittelt. Zukünftig werden für eine Fehler-Ursachen-Analyse und frühzeitige Fehlerbehebung systematische Qualitätsprobleme mit Prozessabweichungen korreliert, die von DXQequipment.analytics angezeigt werden.

Funktionen

  • Dashboarding für qualitätsbezogene Leistungskennzahlen (KPIs) der Anlage
  • Intelligente Mustererkennung für systematische Qualitätsdefekte
  • Visualisierung des Produktlebenszyklus von betroffenen Werkstücken
  • Angabe von Hauptursachen basierend auf Massendatenanalyse und Expertenregeln

Ihr Nutzen

  • Verbesserte Erstläuferquote zur Steigerung der Gesamtanlageneffektivität
  • Strukturierte Übersicht der werkstückbezogenen Qualitäts- und Prozessdaten
  • Unterstützung bei der Suche nach Zusammenhängen zwischen Qualitätsdefekten und Ursachen im Prozess
  • Domänenwissen in Verbindung mit Datenanalytik